sinxe的2cosx方的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:17:37
∫xcos^2xdx=∫x(cos2x+1)/2dx=1/2*∫xcos2xdx+1/2*∫xdx=1/4∫xcos2xd2x+1/4∫dx^2=1/4∫xdsin2x+x^2/4=1/4*xsin2
cosx=A(sinx+cosx)+B(cosx-sinx)cosx=(A-B)sinx+(A+B)cosxA=B,A+B=12A=1=>A=1/2,B=1/2∫cosx/(sinx+cosx)dx=
改写三角函数以便积分,给出两个方法如图.
第一个1/(x^2+2x+2)^0.5的定积分可以化简成1/((x+1)^2+1)^0.5,然后把(x+1)当成u,du/dx=1,所以du=dx,所以原式可以换成∫1/(u^2+1)^0.5du,这
可以不转化成有理函数积分(cosx)^3/(sinx+cosx)=[(cosx)^2(cosx+sinx)]/(sinx+cosx)-(cosx)^2sinx/(sinx+cosx)=(cosx)^2
∫sinx√(1+cosx^2)dx=-∫√(1+cosx^2)dcosx用y=cosx,有=-∫√(1+y^2)dy=-y/2*√(1+y^2)-1/2*ln(y+√(1+y^2))+c又y=cos
用万能代换∫1/1+cosxdx=∫1/(2cos^2(x/2))dx=1/2∫sec^2(x/2)dx=tanx/2+C
1^2=(sin^2+cos^2)^2=sin^4+cos^4+2sin^2cos^2所以sin^4+cos^4=1-2sin^2cos^2=(cos^2-sin^2)^2(cos>sin)所以那个式
设a=sinx,b=cosx,题中的隐含条件是a^2+b^2=1由a+b=√2/2得(a+b)^2=1/2,a^2+2ab+b^2=1/2,2ab=-1/2,ab=-1/4(a^2+b^2)^2=1,
/>用凑微分的方法做详细解答如图/>谢谢o(∩_∩)o
再问:sinx的3次方×cosx的积分再答:
万能代换t=tan(x/2),则x=2arctant,dx=2dt/(1+t^2),cosx=(1-t^2)/(1+t^2),所以∫dx/(cosx+3)=∫dt/(t^2+2)=1/√2×arcta
∫(cosx)^4dx=∫(cosx)^3*cosxdx,利用公式4(cosx)^3-3cosx=cos3x,得原式=∫(cos3x+3cosx)*cosx/4dx=1/4∫(cos3xcosx+3c
sinx/(sinx+cosx)=(tanxcosx)/(tanxcosx+cosx)=tanx/(tanx+1)令t=tanx,则dt=sec^2xdx=(1+tan^2x)dx=(1+t^2)dx
应该是原函数吧分别是-cosxsinx2xInx
再问:第一个再问:谢谢啦再答:再问:第二个能帮我也算下吗再答:哪第二个?另开贴啊再问:再答:这个只是刚那个减1/2啊再问:啊啊啊再问:嗯
法一:法二:
∫(cosx)/x²dx=∫cosxd(-1/x)=(cosx)(-1/x)-∫(-1/x)d(cosx)=-(cosx)/x-∫(sinx)/xdx∫(cosx)/x²dx=∫1
∫(sinx)^2(cosx)^5dx=∫(sinx)^2(1-(sinx)^2)^2cosxdx=∫(sinx)^2[(1+(sinx)^4)-2sin^2]d(sinx)=∫(sinx)^2d(s