sin^2A sin^2B sin^2C=2√3sinAsinBsinC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 02:09:14
cosA=acosB,由正弦定理sinBcosA=sinAcosB,得sin(A-B)=0,得A=B,故为等腰三角形.
1.(sina)^2+(sinb)^2-(sinasinb)^2+(cosacosb)^2=(sina)^2-(sinasinb)^2+1-(cosb)^2+(cosacosb)^2=(sina)^2
由sin^2A+sin^2B-sinAsinB=sin^2C由正弦定理sinA=a/2R,sinB=b/2R,sinC=c/2R则(a/2R)^2+(b/2R)^2-(a/2R)(b/2R)=(c/2
诱导公式f(x)=(1+2cos²x-1)/(4cosx)+asin(x/2)cos(x/2)=(cosx)/2+a/2*sinx=(a/2)sinx+(1/2)cosx=√[(a/2)&s
已经是y=Asin(wx+φ)的形式了A=1w=2π/3φ=π/4
先化简得出f(x)=1/2cosx+a/2sinx=√[(1/2)^2+(a/2)^2]sin(x+∮)其中(tan∮=1/a)由于f(x)的最大值为2,所以√[(1/2)^2+(a/2)^2]=2所
asin(θ+α)=bsin(θ+β)a(sinθcosα+cosθsinα)=b(sinθcosβ+cosθsinβ)asinθcosα+acosθsinα=bsinθcosβ+bcosθsinβ移
y=2sin²B+cos((2π/3)-2B)=(1-cos2B)-1/2cos2B+√3/2sin2B=(-3/2cos2B+√3/2sin2B)+1=√3(1/2sin2B-√3/2co
把左式的平方项化成二倍角:sin^2a=1/2(1-cos2a)sin^2p=1/2(1-cos2p);cos^2a=1/2(1+cos2a)cos^2p=1/2(1+cos2p)左式=1/4[(1-
(asinθ-bcosθ)²=a²+b²,两边同除以a²b²,(sinθ/b-cosθ/a)²=1/a²+1/b²,co
先有已知和正弦定理得:(sinC-sinB)sin^2A+sinBsin^2B=sinCSin^2C∴sinC=sinB或sin^A=sin^B+Sin^C+sinBsinC(1)sinC=sinB,
sin(x/3)cos(x/3)+√3cos^2(x/3)=(1/2)sin(2x/3)+(√3/2)[1+cos(2x/3)]=(1/2)sin(2x/3)+(√3/2)cos(2x/3)+√3/2
正弦定理知等价于证sinacosa+sinbcosb+sinccosc=2sinasinbsin(a+b)=2sin^2asinbcosb+2sin^2bsinacosa移项用二倍角公式等价于cos2
原式=sin^2a+sin^2β-(1-cos^2a)sin^2β+cos^2acos^2β=sin^2a+cos^2asin^2β+cos^2acos^2β=sin^2a+cos^2a(sin^2β
(1)∵asin²B/2+bsin²A/2=c/2∴a(1-cosB)+b(1-cosA)=ca-(a²+c²-b²)/2c+b-(b²+c
f(x)=sin^2x+asin^2(x/2)=sin^2x+a(1-cosx)=1-cos^2x+a-acosx1=-(cos^2x+acosx)+a+1=-(cos^2x+acosx+a^2/4)
(1)2cos^2wxsinφ=(2cos^2wx-1)sinφ+sinφ=cos2wxsinφ+sinφf(x)=A(sin2wxcosφ+cos2wxsinφ+sinφ)-Asinφ=Asin(2
x/acosθ+y/bsinθ=1x^2/a^2cosθ^2+y^2/b^2sinθ^2+2xy/absinθcosθ=1x/asinθ-y/bcosθ=1x^2/a^2sinθ^2+y^2/b^2c