Sn-1=2Sn 2n 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:48:46
Sn-1=2Sn 2n 1
求和Sn=1-2 3-4+

查收!再答:正在上传中再答:再答:

设等比数列{an}的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q=?

因为Sn+1,Sn,Sn+2成等差数列S(n+1)+S(n+2)=2*S(n)(q^(n+1)-1)*a1/(q-1)+(q^(n+2)-1)*a1/(q-1)=2*(q^(n)-1)*a1/(q-1

数列求和:sn=1+1/2+1/3+…+1/n,求sn

这是调和级数,除了逐项相加外,只有近似的求和公式为:Sn~ln(n)+c,c为欧拉常数0.577...

数列{an}前n项和为Sn,且2Sn+1=3an,求an及Sn

当n=1时、有2s1+1=3a1,即有a1=1,因为2Sn+1=3an,所以2Sn+1+1=3an+1.后式减去前式,得2an+1=3an+1-3an.即有an+1=3an,为等比数列,且公比为3,所

Sn=1+1/2+1/3+……1/n Sn的表达式

它是发散级数,没有通项公式.再给ln(n)的情况下,它是收敛的级数,在n趋向于无穷大的时候,定义它的极限为r(咖玛),称为欧拉常数.所以就有了一楼给出的结论.近似的等于ln(n)+r,在n趋向于无穷大

已知数列{an}的前n项和为Sn,且满足an+2Sn*Sn-1=0,a1=1/2.求证:{1/Sn}是等差数列

an+2Sn*Sn-1=0其中an=Sn-Sn-1代入上式:Sn-Sn-1+2Sn*Sn-1=0a1=1/2,故Sn和Sn-1≠0,上式两边同除以Sn*Sn-1得:1/Sn-1-1/Sn+2=0即:1

已知数列{an}的前n项和为Sn,且满足Sn=Sn-1/2Sn-1 +1,a1=2,求证{1/Sn}是等差数列

由Sn=Sn-1/2Sn-1+1,两边同时取倒数可得1/Sn=(2Sn-1+1)/Sn-11/Sn=2+1/Sn-1即1/Sn-1/Sn-1=2故{1/Sn}是首项为1/2,公差为2的等差数列1/Sn

在数列中,a1=1,an=2Sn^2/[(2Sn)-1] (

解题思路:将an用Sn-S(n-1)表示,整理得到Sn与S(n-1)的关系,归结为等差数列的定义形式解题过程:数列{an}的首项an=1,前n项和sn之间满足,求证{1/sn}成等差数列;并求Sn的表

设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=

an=-Sn.S(n-1)Sn-S(n-1)=-Sn.S(n-1)1/Sn-1/S(n-1)=11/Sn-1/S1=n-11/Sn=nSn=1/n

设等比数列{an}中,a1=256,前n项和为Sn,且Sn,Sn+2,Sn+1成等差数列,

Sn=a1(1-q^n)/(1-q)Sn+1=a1[1-q^(n+1)]/(1-q)Sn+2=a1[1-q^(n+2)]/(1-q)2Sn+2=Sn+Sn+1a1[1-q^(n+1)]/(1-q)+a

数列{an}的前n项和为Sn,已知a1+2,Sn+1=Sn-2nSn+1Sn,求an

我会我会Sn+1=Sn-2nSn+1Sn两边同除以Sn+1*Sn得1/Sn+1-1/Sn=2n以此类推1/Sn-1/Sn-1=2(n-1)1/Sn-1-1/Sn-2=2(n-2)...1/S2-1/S

已知数列 an前n项和为Sn,a1=1,Sn=2a(n+1),求Sn

由题意,S(n)-S(n-1)=2a(n+1)-2a(n),即a(n)=2a(n+1)-2a(n),于是a(n+1)=a(n)*3/2,即a(n)是公比是q=3/2的等比数列,且首项是a(1)=1,所

(1).Sn=1+2×3+3×7...n(2^n-1),求Sn.

(1).Sn=1+2×3+3×7……n(2^n-1),求Sn.Sn=1×(2^1-1)+2×(2^2-1)+3×(2^3-1)+……+n(2^n-1)=(1×2^1+2×2^2+3×2^3+……+n×

Sn=3+2^n Sn-1=3+2^(n-1).则Sn-Sn-1=?

 再问: 再问:那个划横线的答案是不是错了再答:我觉得是

已知数列{an}的前项和为sn,且满足sn=sn-12sn-1+1(n≥2),a1=2.

(1)由sn=sn-12sn-1+1(n≥2),a1=2,两边取倒数得1Sn=1Sn-1+2,即1Sn-1Sn-1=2.∴{1sn}是首项为1S1=1a1=12,2为公差的等差数列;(2)由(1)可得

在数列{An}中,已知A1=1,An=2Sn^2/(2Sn-1),(n>=2),证明{1/Sn}是等差数列,并求Sn

n>=2时:∵an=2Sn^2/[(2Sn)-1]∴Sn-(Sn-1)=2Sn^2/[(2Sn)-1]两边同时乘以(2Sn)-1并化简得2Sn(Sn-1)+Sn-(Sn-1)=0两边同时除以Sn(Sn

在数列an中 a1=1 An=2Sn^2/(2Sn-1) 证明1/sn是等差数列 并求 sn

n≥2时,an=Sn-S(n-1)=2Sn²/(2Sn-1)[Sn-S(n-1)](2Sn-1)=2Sn²-Sn-2SnS(n-1)+S(n-1)=0S(n-1)-Sn=2SnS(

Sn=1x2+3x2^2+5x2^3+…+(2n-1)x2^n sn=2sn-sn

2sn=2x2+3x2^2x2+5x2^3x2(2n-1)x2^nx2sn=2sn-sn=2x2^2+2x2^3+…+2x2^n-1x2

已知数列{an}满足a1=2,且2Sn+1Sn/(Sn-Sn+1)=1,求{an}通相公式

2(Sn+1)(Sn)/(Sn-Sn+1)=1上下除以(Sn+1)(Sn)得到2/(1/Sn+1-1/Sn)=11/(Sn+1)-1/Sn=2因此1/Sn+1为等差数列,1/S1=1/a1=1/21/