sn=1*3 2*3 3*3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:36:23
林永嘉,把分给我把,哈哈.Sn+S(n+1)=(5/3)a(n+1)=(5/3)[S(n+1)-Sn]4Sn=Sn+1Sn+1/Sn=4则,Sn成等比数列S1=a1Sn=4*4^(n-1)=4^n你的
查收!再答:正在上传中再答:再答:
分析:由于对于数列的n值有不同范围取值,对应不同的求和公式,可知数列为分段数列,需要对不同范围的n值进行讨论,方可求得数列的通项公式;当n=1时,a1=S1=3+1=4;当2≤n≤5时,an=Sn-S
1/S(n+1)=3/Sn+4令1/Sn=bn则有b(n+1)=3bn+4b(n+1)+2=3(bn+2)等比数列,则bn+2=(b1+2)*3^(n-1)b1=1/S1=1/a1=1所以bn=3^n
取倒数1/(Sn+1)=(4n+3)/Sn令bn=1/(Sn)得b1=1b(n+1)=bn*(4n+3)得b(n+1)/bn=4n+3(1)同理bn/(bn-1)=4(n-1)+3(2)...b2/b
这是调和级数,除了逐项相加外,只有近似的求和公式为:Sn~ln(n)+c,c为欧拉常数0.577...
当n=1时、有2s1+1=3a1,即有a1=1,因为2Sn+1=3an,所以2Sn+1+1=3an+1.后式减去前式,得2an+1=3an+1-3an.即有an+1=3an,为等比数列,且公比为3,所
它是发散级数,没有通项公式.再给ln(n)的情况下,它是收敛的级数,在n趋向于无穷大的时候,定义它的极限为r(咖玛),称为欧拉常数.所以就有了一楼给出的结论.近似的等于ln(n)+r,在n趋向于无穷大
简单不就是放缩法Sn/Sn+1=(2^n-1)/(2^n+1-1)(Sn/Sn+1)-0.5=-1/(2^n+1-1)<0∴Sn/Sn+1<0.5则S1/S2+S2/S3+.+Sn/Sn+1<0.5+
(1)∵Sn+1=2Sn+3n+1,∴当n≥2时,Sn=2Sn-1+3(n-1)+1,两式相减得an+1=2an+3,从而bn+1=an+1+3=2(an+3)=2bn(n≥2),∵S2=2S1+3+
S(n+1)=3Sn+2nS(n+1)-Sn=2Sn+2na(n+1)=2Sn+2nan=2S(n-1)+2(n-1)(n>=2)相减得:a(n+1)-an=2an+2(n>=2)a(n+1)=3an
an=sn-Sn-1(1)Sn=3n^2-nSn-1=3(n-1)^2-(n-1)Sn-Sn-1=3(2n-1)-1=6n-4
n=1时,a1=1+3a1.即a1=-1/2.n>1时,an=Sn-Sn-1=1+3an-(1+3a(n-1))=3an-3a(n-1),即an=3/2a(n-1),即an=-1/2*(3/2)^(n
1.“满足(Sn-Sn+1)/Sn-1-Sn=2+1/an”根据这个式子,能化简成An+1/An=2An+1(注意这里及以后的An+1就是下标的意思)再进一步化简,能得到:An+1=2an+1再凑配能
(1).Sn=1+2×3+3×7……n(2^n-1),求Sn.Sn=1×(2^1-1)+2×(2^2-1)+3×(2^3-1)+……+n(2^n-1)=(1×2^1+2×2^2+3×2^3+……+n×
再问: 再问:那个划横线的答案是不是错了再答:我觉得是
f(n)=[1/2(n+1)n]/[(n+32)(n+2)(n+1)1/2]=n/(n+32)(n+2)=n/(n^2+34n+64),f(n)×(n/n)=1/[n+(64/n)+34]且n为正整数
2sn=2x2+3x2^2x2+5x2^3x2(2n-1)x2^nx2sn=2sn-sn=2x2^2+2x2^3+…+2x2^n-1x2
1)利用Sn+Sn-1=3n²,由归纳法可以得到Sn,其中用到奇数项平方和and偶数项平方和公式,你可以查下2)用an-an-1>0可得a范围再问:其中用到奇数项平方和and偶数项平方和公式
Sn=3a(n+1)+m与S(n-1)=3an+m两式相减:Sn-S(n-1)=an=3a(n+1)-3an.a(n+1)/an=4/3,所以q=4/3.