sn=n平方*an,求an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:42:41
sn=n平方*an,求an
已知数列的前N项和为SN,A1=2,2sn的平方=2ansn-an(n≥2)求an和sn

因为S(n+1)-S(n)=A(n+1),根据题意有:2S(n+1)^2=2A(n+1)S(n+1)-A(n+1),将上式代入此式得:2S(n+1)^2=2[S(n+1)-S(n)]S(n+1)-S(

已知数列An=n,Sn为完全平方数,求n

好像有很多哦,我写了一个程序得到了10000以内的这样的数就有:1:1=1*18:36=6*649:1225=35*35288:41616=204*2041681:1413721=1189*11899

已知数列an的前n项和sn且sn=n平方+n 求an的通项公式

当n=1时a1=s1=1²+1=2当n≥2时sn=n²+n---------------------------①s(n-1)=(n-1)²+(n-1)---------

等比数列an的前n项和为sn,sn=1+3an,求:an

n=1时,a1=1+3a1.即a1=-1/2.n>1时,an=Sn-Sn-1=1+3an-(1+3a(n-1))=3an-3a(n-1),即an=3/2a(n-1),即an=-1/2*(3/2)^(n

已知数列An满足An>0,其前n项和为Sn为满足2Sn=An的平方+An(1)求An(2)设数列Bn满足An/2的n次方

(1)2Sn=an^2+an2Sn-1=a(n-1)^2+a(n-1)2an=2Sn-2Sn-1=an^2-a(n-1)^2+an-a(n-1)an^2-a(n-1)^2=an+a(n-1)[an+a

已知数列{an}的前N项和Sn与an之间满足a1=1,Sn=n的平方*an,求{an}

解由Sn=n的平方*an,得S(n-1)=(n-1)^2*a(n-1)∴Sn-S(n-1)=n^2an-(n-1)^2a(n-1)an=n^2an-(n-1)^2a(n-1)因此an/a(n-1)=(

数列AN的前几项和SN=10N-N的平方,又B=AN 的绝对值,求

s(n)=10n-n^2,a(1)=s(1)=10-1=9,a(n+1)=s(n+1)-s(n)=10-(2n+1)=9-2n,a(n)=9-2(n-1)=11-2n1

已知数列sn各项为非零实数,前n项和为sn且sn平方-n平方*sn-(n平方+1)=0 求an通项

Sn^2-n^2×Sn-(n^2+1)=0(Sn+1)[Sn-(n^2+1)]=0数列各项为非零实数,S1≠0,且Sn不恒为0,因此只有Sn=n^2+1n=1时,a1=S1=1+1=2n≥2时,an=

【急!已知Sn为数列{an}的前n项和 a1=1 Sn=n的平方 乘以an 求数列{an}的通项公

Sn-S(n-1)=An=An*n^2-A(n-1)^2化简得An/[A(n-1)]=(n-1)/(n+1)A2/A1=1/3A3/A2=2/4.An/A(n-1)=(n-1)/(n+1)各项相乘得A

已知数列an中,a1=1,当n≥2时,其前n项和Sn平方=an(Sn-1/2) 求Sn表达式.

题目是不是错了?经化简可得2Sn/Sn-1=1-(Sn-1/Sn),发现Sn/Sn-1无解

sn=2n(平方)-3n,求an的通项公式

sn=2n^2-3nan=Sn-S(n-1)=2n^2-3n-[2(n-1)^2-3(n-1)]=4n-5

a1=1/2,an+1=an/an+2,求n/an的sn

a[n+1]=a[n]/(a[n]+2)是不是这样子?那么两边同时取倒数.1/a[n+1]=[an+2]/an=1+2/an1/a[n+1]+1==2+2/an=2{1/an+1}所以形如1/an+1

已知数列{an}的前几项和Sn=n平方+1,求数列的通项公式{an}

因为Sn=n^2+1a1=s1=2∴S(n-1)=(n-1)^2+1∴an=Sn-S(n-1)=n^2+1-(n-1)^2-1=2n-1n≥2,且n∈N*∴an=2n=12n-1n≥2,且n∈N*

已知数列{an}中的各项均为正数,前n项和Sn满足4Sn=(an+1)平方,求{an}的同项公式

4a(1)=[a(1)+1]^2a(1)=14a(n+1)=[a(n+1)+1]^2-[a(n)+1]^2[a(n)+1]^2=[a(n+1)-1]^2若a(n+1)>1a(n+1)=a(n)+2a(

已知数列(an)中,前n项和Sn=4n的平方+n.求an

a1=S1=4+1=5n>=2时,an=Sn-S(n-1)=4n^2+n-4(n-1)^2-(n-1)=8n-3,a1也符合.所以,an=8n-3,其中n为正整数.

已知数列(an)的前N项和SN=2N的平方减3N+1,求AN

看不懂啊是Sn=2n^2-(3n+1)还是Sn=(2n)^2-(3n+1)?题目容易令n=1求出a1=-2Sn-1=2(n-1)^2-3(3(n-1)+1)an=Sn-Sn-1=2(2n-1)-3=4

已知正项数列an的前n项和为sn,且满足:an平方=2sn-an(n属于N*).求an的通项公式;2.求数列{an,2a

(An)^2=2Sn-An=>(A(n-1))^2=2S(n-1)-A(n-1)=>(An)^2-(A(n-1))^2=2Sn-An-2S(n-1)+A(n-1)=>(An+A(n-1))*(An-A

已知数列an=n^(an等于n的平方),求数列和Sn=?

(n+1)³-n³=3n²+3n+1n³-(n-1)³=3(n-1)²+3(n-1)+1……2³-1³=3×1²