sn=n平方*an,求an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 19:42:41
因为S(n+1)-S(n)=A(n+1),根据题意有:2S(n+1)^2=2A(n+1)S(n+1)-A(n+1),将上式代入此式得:2S(n+1)^2=2[S(n+1)-S(n)]S(n+1)-S(
好像有很多哦,我写了一个程序得到了10000以内的这样的数就有:1:1=1*18:36=6*649:1225=35*35288:41616=204*2041681:1413721=1189*11899
当n=1时a1=s1=1²+1=2当n≥2时sn=n²+n---------------------------①s(n-1)=(n-1)²+(n-1)---------
把an用sn-s(n-1)替代计算
n=1时,a1=1+3a1.即a1=-1/2.n>1时,an=Sn-Sn-1=1+3an-(1+3a(n-1))=3an-3a(n-1),即an=3/2a(n-1),即an=-1/2*(3/2)^(n
(1)2Sn=an^2+an2Sn-1=a(n-1)^2+a(n-1)2an=2Sn-2Sn-1=an^2-a(n-1)^2+an-a(n-1)an^2-a(n-1)^2=an+a(n-1)[an+a
解由Sn=n的平方*an,得S(n-1)=(n-1)^2*a(n-1)∴Sn-S(n-1)=n^2an-(n-1)^2a(n-1)an=n^2an-(n-1)^2a(n-1)因此an/a(n-1)=(
s(n)=10n-n^2,a(1)=s(1)=10-1=9,a(n+1)=s(n+1)-s(n)=10-(2n+1)=9-2n,a(n)=9-2(n-1)=11-2n1
Sn^2-n^2×Sn-(n^2+1)=0(Sn+1)[Sn-(n^2+1)]=0数列各项为非零实数,S1≠0,且Sn不恒为0,因此只有Sn=n^2+1n=1时,a1=S1=1+1=2n≥2时,an=
Sn-S(n-1)=An=An*n^2-A(n-1)^2化简得An/[A(n-1)]=(n-1)/(n+1)A2/A1=1/3A3/A2=2/4.An/A(n-1)=(n-1)/(n+1)各项相乘得A
题目是不是错了?经化简可得2Sn/Sn-1=1-(Sn-1/Sn),发现Sn/Sn-1无解
sn=2n^2-3nan=Sn-S(n-1)=2n^2-3n-[2(n-1)^2-3(n-1)]=4n-5
a[n+1]=a[n]/(a[n]+2)是不是这样子?那么两边同时取倒数.1/a[n+1]=[an+2]/an=1+2/an1/a[n+1]+1==2+2/an=2{1/an+1}所以形如1/an+1
因为Sn=n^2+1a1=s1=2∴S(n-1)=(n-1)^2+1∴an=Sn-S(n-1)=n^2+1-(n-1)^2-1=2n-1n≥2,且n∈N*∴an=2n=12n-1n≥2,且n∈N*
4a(1)=[a(1)+1]^2a(1)=14a(n+1)=[a(n+1)+1]^2-[a(n)+1]^2[a(n)+1]^2=[a(n+1)-1]^2若a(n+1)>1a(n+1)=a(n)+2a(
a1=S1=4+1=5n>=2时,an=Sn-S(n-1)=4n^2+n-4(n-1)^2-(n-1)=8n-3,a1也符合.所以,an=8n-3,其中n为正整数.
看不懂啊是Sn=2n^2-(3n+1)还是Sn=(2n)^2-(3n+1)?题目容易令n=1求出a1=-2Sn-1=2(n-1)^2-3(3(n-1)+1)an=Sn-Sn-1=2(2n-1)-3=4
(An)^2=2Sn-An=>(A(n-1))^2=2S(n-1)-A(n-1)=>(An)^2-(A(n-1))^2=2Sn-An-2S(n-1)+A(n-1)=>(An+A(n-1))*(An-A
(n+1)³-n³=3n²+3n+1n³-(n-1)³=3(n-1)²+3(n-1)+1……2³-1³=3×1²