sn除以tn等于(3n-1) (4n-3)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:37:58
sn除以tn等于(3n-1) (4n-3)
高一数学简单数列题等差数列A和B的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则An/Bn等于多少?高手给个

∵S(2n-1)=(2n-1)(A1+A(2n-1))/2=(2n-1)(2An)/2=An(2n-1)同理:T(2n-1)=Bn(2n-1)∴S(2n-1)/T(2n-1)=An/Bn=2(2n-1

等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1 ,则an/bn=

an/bn={[a1+a(2n-1))]/2}/{[b1+b(2n-1)]/2}=n{[a1+a(2n-1))]/2}/n{[b1+b(2n-1)]/2}=S(2n-1)/T(2n-1)=2(2n-1

已知Sn=1/2n(n+1),Tn=S1+S2+S3+.+Sn,求Tn.

因为但看1+2+3...+n这个数列,通项公式为n(n+1)/2=n^/2+n/2所以1=1/2(1^+1)1+2=1/2(2^+2)1+2+3=1/2(3^+3)以此类推,提出共因数1/2,合并括号

等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn

∵{an}与{bn}是等差数列∴Sn=[n(a1+an)]/2Tn=[n(b1+bn)]/2∴Sn/Tn=(a1+an)/(b1+bn)∵等差数列{an}与{bn}的前n项和的比为2n:(3n+1)∴

两个等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求an/bn.

S(2n-1)=(A1+A(2n-1))×(2n-1)/2=(A1+A1+(2n-2)d)×(2n-1)/2=(A1+(n-1)d)×(2n-1)=An×(2n-1)同理T(2n-1)=Bn×(2n-

等差数列{An},{Bn}的前n项和为Sn与Tn,若Sn/Tn=2n/3n+1,则A5/B7的值是

用“首项加末项,乘以项数除以2”的那个前n项和公式,分别代入到已知等式中的Sn,Tn中很容易得到:[(a1+an)/2]/[(b1+bn)/2]=2n/(3n+1)即(a1+an)/(b1+bn)=2

等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则a5/b5=?

肯定不能像你那样算啊,(s5-s4)/(s5-s4)=(2*5-2*4)/(3*5+1-3*4+1)这个是错的,这个没有任何根据a5/b5=(9a5)/(9b5)=S9/T9=18/28=9/14再问

等差数列{An},{Bn}的前n项和为Sn与Tn,若Sn/Tn=2n/3n+1,则An/Bn的值是?

S(2n-1)=(A1+A(2n-1))×(2n-1)/2=(A1+A1+(2n-2)d)×(2n-1)/2=(A1+(n-1)d)×(2n-1)=An×(2n-1)同理T(2n-1)=Bn×(2n-

有关等差数列的数学题已知等差数列{an},{bn}的前n项和分别为Sn,Tn,且Sn/Tn=(3n+2)/(2n+1),

由等差数列的性质Sn=na1+n(n-1)d/2=dn2/2+(a1-d/2)n=An2+Bn即A=d/2B=a1-d/2同样地Tn=nb1+n(n-1)p/2=pn2/2+(b1-p/2)n=Cn2

等差数列{an}{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求a5/b5=多少

用“首项加末项,乘以项数除以2”的那个前n项和公式,分别代入到已知等式中的Sn,Tn中很容易得到:Sn/Tn=[(a1an)n/2]/[(b1bn)n/2]=2n/(

两个等差数列{An}{Bn}的前n项和分别为Sn,Tn,若Sn除以Tn等于2n加1除以n加3,则A6加B6等于多少

Sn/Tn=(2a1-1+nDa)/(2b1-1+nDb)=(2n+1)/(n+3)a1,b1是A,B首项,Da,Db是A,B公差这里条件不足了.需要a1,b1,Da,Db中任何一个数的具体值才行举个

若{an}{bn}等差,其前n项和分别为Sn Tn若Sn/Tn=2n+3/3n-1

S17=a1+a2+……+a17=17a9T17=b1+b2+……+b17=17b9(先利用等差数列的特性(n项相加等于它的中位数),再用等量置换的方法)Sn/Tn=2n+3/3n-1S17/T17=

等差数列{an} {bn}的前n项的分别为Sn Tn.若Sn/Tn=2n/(3n+1),求an/bn的表达式.

Sn/Tn=2n/(3n+1)(a1+a1+(n-1)*d1)/(b1+b1+(n-1)*d2)=2n/(3n+1)(2a1-d+n*d1)/(2b1-d2+n*d2)=2n/(3n+1)->2a1=

两个等差数列{an}和{bn}的前n项和分别是Sn和Tn,Sn/Tn=2n+3/3n-1,求a9/b9

{an}和{bn}公差分别设为d1、d2Sn=na1+n(n-1)d1/2Tn=nb1+n(n-1)d2/2Sn/Tn=[2a1+(n-1)d1]/[2b1+(n-1)d2]=(2n+3)/(3n-1

两个等差数列{an}和{bn}的前n项和分别是sn和tn,若sn/tn=(2n+3)/(3n-1),求a9/b9

等差数列求和公式求解S17=(a1+a17)*17/2=2a9*17/2=17a9同理T17=17b9a9/b9=S17/T17=37/50再问:答案怎么得到的?详细点再答:由sn/tn=(2n+3)

等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn等于多少?

方法一叫构造法,是先猜后证,靠人品.给答案的人是知道答案才能给出这种方法,非数学方面的科研人员可以忽略.方法二中利用的是中间项等于首尾和的一半.即令n为奇数k=(n+1)/2,ak=(a1+an)/2

等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则a3/b3等于多少?

a3/b3=2a3/2b3=(a1+a5)/(b1+b5)=[(a1+a5)*5/2]/[(b1+b5)*5/2]=S5/T5=2*5/(3*5+1)

1.两个等差数列{an}和{bn}的前n项和分别是Sn,Tn,若Sn/Tn=2n+3/3n-1,求a9/b9.

1、a9/b9=(a1+8d)/(b1+8m)=[(a1+a1+16d)/2]/[(b1+b1+16m)/2]=[17(a1+a17)/2]/[17(b1+b17)/2]=S17/T172、数列为首项