Sn=1 2² 3² 4² (n-1)²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:19:31
1/S(n+1)=3/Sn+4令1/Sn=bn则有b(n+1)=3bn+4b(n+1)+2=3(bn+2)等比数列,则bn+2=(b1+2)*3^(n-1)b1=1/S1=1/a1=1所以bn=3^n
取倒数1/(Sn+1)=(4n+3)/Sn令bn=1/(Sn)得b1=1b(n+1)=bn*(4n+3)得b(n+1)/bn=4n+3(1)同理bn/(bn-1)=4(n-1)+3(2)...b2/b
Sn+1/(2n+1)-Sn/(2n-1)=1Sn/(2n-1)=S1+n-1→Sn=(S1+n-1)(2n-1)→Sn=n(2n-1)an=4n-31/√an=2/2√(4n-3)>2/(√4n-3
假设Sk=Tk,显然因为Tk=1/(k+1)+1/(k+2)+...+1/(k+k)所以:Tk+1=1/[(k+1)+1]+1/[(k+1)+2]+...+1/[(k+1)+k-1]+1/[(k+1)
(Ⅰ):证明:∵Sn=12(n+1)(an+1)−1,∴Sn+1=12(n+2)(an+1+1)−1∴an+1=Sn+1−Sn=12[(n+2)(an+1+1)−(n+1)(an+1)]整理,得nan
1/n*(n+1)*(n+2)=0.5/n-1/(n+1)+0.5/(n+2)Sn=[1-1/2-1/(n+1)+1/(n+2)]/2=[1/2-1/(n+1)+1/(n+2)]/2再问:多谢可不可以
证明:(1)由Sn=n2an−n(n−1)知,当n≥2时:Sn=n2(Sn−Sn−1)−n(n−1),…(1分)即(n2−1)Sn−n2Sn−1=n(n−1),∴n+1nSn−nn−1Sn−1=1,对
/>利用组合数公式n(n+1)(n+2)=6*C(n+2,3)Sn=6[C(3,3)+C(4,3)+C(5,3)+.+C(n+2,3)]Sn=6[C(4,4)+C(4,3)+C(5,3)+.+C(n+
因为1-5=-4,9-13=-4,17-21=-4,当n为偶数时,有n/2个-4,即Sn=-4*n/2,当n为偶数时,有(n-1)个-4,再+数列最后一项(-1)^n-1(4n-3),此时(-1)^n
sn=3*1-1+2^1+3*2-1+2^2+.+3n-1+2^n=3*(1+2+.+n)-n+2^1+2^2+.+2^n=3n(n+1)/2-n+2*(1-2^n)/(1-2)=(3n^2+3n-2
Sn=1*2*3+2*3*4+……+n(n+1)(n+2)=(1³+2³+3³+----+n³)+3(1²+2²+3²+---+n
1/n(n+1)=1/n-1/(n+1),Sn=1/2+1/6+1/12+...+1/n(n+1)=1-1/2+1/2-1/3+...+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)S(n
注:p^n表示p的n次方,a*b表示a与b相乘.第一问楼上已经解释的很详细了,本人就不多解释了.第二问,对于cosnπ,因为n为正整数,所以n为偶数时,cosnπ=cos0=1,n为奇数时,cosnπ
再问: 再问:那个划横线的答案是不是错了再答:我觉得是
f(n)=[1/2(n+1)n]/[(n+32)(n+2)(n+1)1/2]=n/(n+32)(n+2)=n/(n^2+34n+64),f(n)×(n/n)=1/[n+(64/n)+34]且n为正整数
1)利用Sn+Sn-1=3n²,由归纳法可以得到Sn,其中用到奇数项平方和and偶数项平方和公式,你可以查下2)用an-an-1>0可得a范围再问:其中用到奇数项平方和and偶数项平方和公式
Sn=1/2+3/4+5/8+...+(2n-1)/2^nSn/2=1/4+3/8+...+(2n-3)/2^n+(2n-1)/2^(n+1)Sn-Sn/2=Sn/2=1/2+1/2+1/4+1/8+
(1)An=3(1+2^n)(2)由题知,Sn=2An+3n-12=6(2^n-1)+3nBn=(An-3)/(Sn-3n)(A(n+1)-6)=(3*2^n)/(6(2^n-1))(3(2^(n+1
等差数列求和公式公式:Sn=(a1+an)n/2;Sn=na1+n(n-1)d/2(d为公差);Sn=An2+Bn;A=d/2,B=a1-(d/2).