齐次方程组的解直接用n2-n3就得到了
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:48:53
(n1+2n2,kn1-4n2+kn3,n1+2n2-n3)=(n1,n2,n3)KK=1k12-420k-1|K|=2k+4所以k≠-2时,向量组...也是基础解系
由于是理想变压器,所以有P1=P2+p3所以P1=2×6+4×3=24W又U1U2=n1n2,所以U1=n1n2U2=42×6V=12V所以原线圈中的电流为I1=P1U1=2412=2A所以电阻R消耗
齐次方程的基础解系的向量个数为4-r(A)=4-3=12*n1-(n2+n3)=(3,4,5,6)^T=a为一个基础解系齐次方程通解=ka非齐次方程的通解为特解+齐次方程通解即n1+k(3,4,5,6
m2+m-1=0,n2-n-1=0代数式m3+n3+2m2-2n2+2008的值m2+m-1=0,n2-n-1=0m^2+m=1,n^2-n=1m3+n3+2m2-2n2+2008=m^3+m^2+m
n3到n1难度依次增加可以度娘到各种备考资料不过我最爱沪江内容很广
可能是n1,n2,n3的数据类型不能做减法,试试这个:selectn1,n2,n3from#awheren1>n2再问:其实我是想查出,n1=n2,n1>n2,n10,sum(n1-n2)
根据2NOI2N2O4算出来的比如:20s时,生成0.05molN2O4时,消耗0.10molNO2,所以n1=0.40-0.10=0.30;40s时,消耗0.40-0.26=0.14molNO2,生
证明:因为m³-n³=(m-n)(m²+mn+n²)m²-n²=(m-n)(m+n)所以有(m-n)(m²+mn+n²)
#include<stdio.h>void main(){\x05char n1,n2,n3,max;\x05scanf("%c%c%c",&
你的答案是正确的,由标准答案给出的两个基础解析可以得到你的解标准答案中ξ2×2-ξ1的得数就是你的ξ2基础解析只要能表示解空间的所有解就行,你和标准答案都是正确的!再问:懂了,谢谢。另外关于矩阵秩的证
由于方程组是非齐次的它的解等于它本身的一个解加上它的齐次方程组的解它的齐次方程组的解直接用n2-n3就得到了也就是(1,6,-1)T
(1/2)(n1+n2)=(1/2,1,1/3)'是特解因为系数矩阵的秩为1,所以方程组的导出组的基础解系含3-1=2个向量(n1+n2)-(n3+n1)=(0,2,4)'(n2+n3)-(n3+n1
publicclassTestNum{/***@paramargs*/publicstaticvoidmain(String[]args){int[]num={1,2,3,4};//假设四个数字各不相
墙壁上这些黑色的半圆是插座n1n2~表示不同的回路.
因m2=2n+3,n2=2m+3所以m2-n2=(2n+3)-(2m+3)所以(m+n)(m-n)=2(n-m),⑴m=n时,m2=2m+3,解得:m=-1或m=3,所以m=n=-1或m=n=3当①m
你好要用数学归纳法证明:1、当n=1时,右边=1²*2²/4=1=1³=左边,成立2、假设n=k,k是正整数时成立,即1³+2³+...+k³
是的分析:方程A*x=Bn1n2是非齐次的解那么A*n1=BA*n2=B二式相减A*(n1-n2)=0因此n1-n2是其次解,同理可证剩下两个(如果是其他形式的方程,也一样,带入相减可以证)再问:n1
(n3-n+5)/(n2+1)=[(n^3+n)-(2n-5)]/(n^2+1)=n-(2n-5)/(n^2+1)所以(2n-5)/(n^2+1)必须为整数.=>|2n-5|>n^2+1或者2n-5=