齐次线性方程组,其中A 是 矩阵,问:在什么条件下有非0解,在什么条件下只有0解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:20:56
带有参数的方程组要麻烦一些,要分情况讨论(1)A=11-2321-6432a71-1-6-1r3-r1-r2,r2-2r1,r4-r111-230-1-2-200a+800-2-4-4r4-2r2,r
只需证明A^TAX=0的解是AX=0的解即可因为A^TAX=0的解是XTATAX=(AX)^T(AX)=0的解令AX=B,则BTB=0,所以B=AX=0证毕!
你这是原题吗,感觉不完整A非零,说明r(A)>=1α4后面没涉及到
有,即是(A,0).但是没有多少实质的作用!不用影响秩的求解,在化为阶梯形矩阵时也没有多大影响!
A为m×n矩阵,∴A有m行n列,且方程组有n个未知数 Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.矩阵A有n列,∴A的列向量组线性无关
选a再问:Ϊʲô��再答:���ϵ������ʽ��ֵ���㡣��ֻ�������再问:лл��再答:���á���再问:û���װ�再问:�ڲ���再答:�ڡ���再答:���ҵ绰�������㽲�
设B=[b1,b2,……,bs]那么AB=OA[b1,b2,……,bs]=[O,O,……,O]Abi=0,(i=1……s)即bi(i=1,2,...,s)是AX=O的解
齐次线性方程组Ax=0的基础解系有2个解,说明r(A)=3,即A的所有4阶子式都是0.想想A*的定义,就知道A*是0矩阵,故r(A*)=0.
证明:(1)设k1η1+k2(η1-η2)=0,则k1Aη1+k2A(η1-η2)=0已知η1与η2是非齐次线性方程组Ax=b的两个不同解,因此Aη1=Aη2=b∴k1b=0而b≠0∴k1=0∴k2(
n-r个向量,当r=n时方程组只有零解
(1)A-->r2+2r1,r3+3r1,r2*(1/7)12-3-207-10014-20r3-2r212-3-201-1/700000r1-2r210-19/7-201-1/700000基础解系为
齐次线性方程组有唯一解,矩阵A满足什么条件?R(A)=n.即未知数的个数齐次线性方程组有无穷解R(A)
知识点:齐次线性方程组AX=0的基础解系含n-R(A)个解向量1.由已知,AX=0的基础解系可由BX=0的基础解系线性表示所以n-R(A)=R(B)正确.2.显然错误:秩的大小不能决定解,只能决定线性
(1)A-->r2+2r1,r3+3r1,r2*(1/7)12-3-207-10014-20r3-2r212-3-201-1/700000r1-2r210-19/7-201-1/700000基础解系为
选D.若Ax=b有无穷多个解等价于R(A)=R(A,B)
(A,B)=r(A)r(A,B)=r(A)=nr(A,B)=r(A)
线性方程组AX=0有非零解r(A)
证明:首先,显然Ax=0的解都是A^2x=0的解.又因为r(A)=r(A^2)所以两个齐次线性方程组的基础解系都含有n-r(A)个解向量故Ax=0的基础解系也是A^2x=0的基础解系所以两个齐次线性方
系数矩阵:方程组左边各方程的系数作为矩阵就是此方程的系数矩阵.增广矩阵:将非齐次方程右边作为列向量加在系数矩阵后就是增广矩阵.其次方程有非零解的条件是系数矩阵的秩小于N,就是说未知数的个数大于方程的个