齐次线性方程组AX=0有无穷多组解则非齐次线性方程组 是否也必有无穷多组解?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:28:25
有2个不同的解说明(1)有解,则r(A)=r(增广矩阵)(2)有无穷多解,故r(A)再问:老师,可不可以这样理解?然后有无穷多解就说明就有不唯一的解,满足题要求,所以r(A)<n再答:可以有解时只有两
证明:设k1(α1+β)+k2(α2+β)+⋯+km(αm+β)+kβ=0则k1α1+k2α2+⋯+kmαm+(k1+k2+...+km+k)β=0.等式两边左乘A,由已知Aα
问题一:非齐次线性方程组Ax=b的解要用增广矩阵的秩来判定:1、当r(A)
不对.Ax=b有无穷多解,A不满秩,Ax=0有非零解;反之未必,Ax=0有非零解,A不满秩,但Ax=b可能无解.如有解则有无穷多解.
(n1+2n2,kn1-4n2+kn3,n1+2n2-n3)=(n1,n2,n3)KK=1k12-420k-1|K|=2k+4所以k≠-2时,向量组...也是基础解系
证明实系数线性方程组AX=B有解的充要条件是用它的常数项依次构成的列向量B与它所对应的齐次线性方程组AX=0的解空间正交.这不成立!增广矩阵(A,B)=-110-2-3-2-3-1-3-2-3-1通解
C2a1+b2是AX=b的解b1+b2是AX=2b的解a1+a2是AX=0的解b1-b2是AX=0的解
未知数的个数多于方程的个数;比如三个未知数:X,Y,Z;两个方程:X+Y+Z=100X-Y+Z=1X=(101-2Z)/2Z任意Y=99/2无穷多组解用较专业一点的说法,非齐次线性方程组Ax=B有无穷
用矩阵来求呀,第一步列矩阵,第二步将它的增广矩阵化为阶梯型,然后写出解集再问:0*阵不还是0吗,x=0*A逆=0,怎么求啊,
∵η1,η2是非齐次线性方程组AX=b的解∴Aη1=bAη2=b∴Aη1-Aη2=b-b=0A(η1-η2)=0∴X=η1-η2
选D因为β是对应的齐次方程组AX=0的解所以非齐次线性方程组AX=B的解可表示为α=kβ+s其中s为非齐次线性方程组AX=B的特解令α1=mβ+s,α2=nβ+s则β+1/2α1+1/2α2=(1+(
错误.若线性方程组AX=B有无穷多解,则它所对应的齐次线性方程组AX=0有无穷多解
令x1,x2,为A有2个无关解,则S=n-r(A)r(A)=n-2〈n-1则r(A*)=0,即A*=0所以x1,x2也为A*X=0的解再问:能将的详细一点吗?不是很明白。r(A)=n-2〈n-1则r(
选D.若Ax=b有无穷多个解等价于R(A)=R(A,B)
c零向量肯定是一个解.如果AX=O有非0解S的话,设AX=B的解为C,那么A(C+S)=AC+AS=B+0=B,所以C+S也是一个解,而且与C不同,这样的话AX=B的解就不是唯一的了.所以AX=0只有
AX=b有无穷多解的充要条件是r(A)=r(增广矩阵)所以AX=0有非零解事实上,AX=b的两个不同解的差就是AX=0的一个非零解再问:可是为什么R(A)=r<n,Ax=0有非零解,Ax=0有非零解助
设β是AX=0的解,则Aβ=0.所以(a1,...,an)β=0所以A的列向量以β的分量为组合系数的线性组合等于0
因为有无穷多个解所以矩阵1-1-3201a-2a3a516的秩小于31-1-3201a-2a0a+314101-1-3201a-2a0014-(a-2)(a+3)10-a(a+3)14-(a-2)(a
-1利用矩阵的初等行变换即可再问:我还有好多线性代数题,帮我做下?我都设好了。。