齐次线性方程组的基础解系及通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 06:50:02
齐次线性方程组的基础解系及通解
求下列齐次线性方程组的通解,并求出基础解系.

X1+X2+X3+X4=0,2X1+3X2+X3+X4=0,4X1+5X2+3X2+3X4=0x2=x3+x4x1=-2x3-2x4x3,x4,任意取值

求下列非齐次线性方程组的通解及相应的齐次线性方程组的一个基础解系

增广矩阵=154-1333-1252223-21r2-3r1,r3-2r1154-1330-16-1044-70-8-524-5r2-2r3154-133000-430-8-524-5r3+6r2,r

1、求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解 2、已知随机变量X的分布律如

1.11112231111022511112231110-11131111201-1-1-30-11131111201-1-1-300000结果只剩两个有效方程式,秩降到2了设x3,x4p,q1111

解向量与齐次线性方程组通解的关系

非齐次线性方程组的通解=对应齐次线性方程组的通解+非齐次线性方程组的一个特解.你这个特解是已知的了,那主要就是求对应那个齐次方程的通解了.利用秩判断一下.再不会就把方程发上来.

线代求助:求线性方程组的通解,并指出其对应的齐次线性方程组的一个基础解系

希望对你有所帮助,我刚考完线性代数!也希望得到你的认可!

求线性方程组的基础解系和通解

系数矩阵A=21-1142-2121-1-1r2-2r1,r3-r121-11000-1000-2r2+r2,r3-2r2,r2*(-1)21-1000010000选x1,x3作自由未知量,得基础解系

求下列齐次线性方程组Ax=0的基础解系与通解,其中系数矩阵A为:

(1)A-->r2+2r1,r3+3r1,r2*(1/7)12-3-207-10014-20r3-2r212-3-201-1/700000r1-2r210-19/7-201-1/700000基础解系为

求齐次线性方程组,的基础解系以及通解.

解:系数矩阵=11-1-12-5327-731r2-2r1,r3-7r111-1-10-7540-14108r3-2r211-1-10-7540000r2*(-1/7)11-1-101-5/7-4/7

求下列齐次线性方程组的一个基础解系和通解:

系数矩阵A=[1114][2135][1-13-2][3156]行初等变换为[1114][0-11-3][0-22-6][0-22-6]行初等变换为[1114][01-13][0000][0000]行

求下列齐次线性方程组的一个基础解系和通解

系数矩阵A=[1111][2135][1-13-2][3156]行初等变换为[1111][0-113][0-22-3][0-223]行初等变换为[1111][01-1-3][000-9][000-3]

求下列齐次线性方程组的基础解系及通解

解:系数矩阵A=112334125658r3-2r1-r3,r2-3r1112301-5-70000r1-r21071001-5-70000方程组的基础解系为:(-7,5,1,0)^T,(-10,7,

求数学齐次线性方程组求X1+X2-2X4=0 4X1-X2-X3-X4=0 3X1-X2-X3=0的基础解系及通解

化为标准型,基础解系是(1121)转置,通解乘个系数就完事了再问:详细解答,谢谢再答:公式打起来麻烦,你得稍等会再问:好的,谢谢,我是自学的考生,书上讲的太简单,有的也看不明白再答:所以,方程可化为x

线性代数,求下列齐次线性方程组的基础解系及通解.化出的最后那个矩阵是 1 0 7 10 0 1

把最后那个矩阵写成相应的方程组就明白了x1+7x3+10x4=0x2-5x3-7x4=0把x3,x4移到等号右边,分别取1,0和0,1就得到了再问:为什么选择x3x4移动呢再答:你没看教材吧,看看教材

求下列齐次线性方程组的基础解系与通解.详见问题补充

求下列齐次线性方程组的基础解系与通解.x1+2x2-3x3=0,2x1+5x2-3x3=0,x1+4x2-3x3=0系数矩阵A=12-325-314-3r2-2r1,r3-r112-3013020r3

求齐次线性方程组的基础解系和通解

系数矩阵:11-1-12-53-27-732r2-2r1,r3-7r1得:11-1-10-7500-14109r3-2r2:11-1-10-7500009矩阵的秩为3,n=4,基础解劝系含一个解劝向量

求线性方程组的基础解系 通解的方法

1.将增广矩阵经初等行变换化成行阶梯形(此时可判断解的存在性)2.有解的情况下,继续化成行简化梯矩阵非零行的首非零元所处的列对应的未知量是约束变量,其余未知量是自由未知量例:非齐次线性方程组12045

求线性方程组的基础解系及通解

系数矩阵变成一列只有一个1的形式就行了再问:有没有具体步骤再答:给你个类似的链接http://zhidao.baidu.com/link?url=FXAMOQdr-OYdO6cv3yst2et12aA