求微分方程x^2y\'=(y^2+2xy)的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:00:43
再问:多谢!!!
令f(x)=x*y'f'=y'+xy''xf'=xy'+x^2y''=1f'=1/xf=lnx+c1xy'=lnx+c1y'=lnx(1/x)+c1/xy=1/2*(lnx)^2+c1*lnx+c2再问:答案正确但是过程完全不理解.再答:碰
dy/dx=(1+y^2)/(xy)[y/(1+y^2)]dy=dx/x两边积分得1/2[ln(1+y^2)]+c1=ln|x|+c2,c1,c2为任意常数两边都以e为底数得1+y^2=cx^2,c为任意常数
(xy^2-x)dx+(x^2y+y)dy=0xy^2dx-xdx+x^2ydy+ydy=0xy^2dx+x^2ydy-xdx+ydy=02xy^2dx+2x^2ydy-2xdx+2ydy=0注意:d(x^2y^2)=2xy^2dx+2x^
设x=e^t则d^2y/dt^2-5dy/dt+6y=e^ty=C1*e^(3t)+C2*e^(2t)+1/2e^t=C1*x^3+C2*x^2+x/2再问:设x=e^t则d^2y/dt^2-5dy/dt+6y=e^t这个怎么出来的啊再答:
令u=x/y,则dx/dy=u+ydu/dy原式化为u+ydu/dy=-u/y+2u+1(即变量y因变量u的一次线性非齐次方程)整理得du/dy-(1/y^2-1/y)u=1/y先求齐次方程du/dy-(1/y^2-1/y)=0可得u=Cy
xdy+ydx-(x^2+3x+2)dx=0设dz(x,y)=xdy+ydx-(x^2+3x+2)dx∂z/∂y=x,z=xy+g(x),∂z/∂x=y+g‘(x)又:∂z/
dy/dx=(xy+3x-y-3)/(xy-2x+4y-8)=(x-1)(y+3)/(x+4)(y-2)再问:然后呢?再答:(y-2)dy/(y+3)=(x-1)dx/(x+4)已经是变量分离方程,两边积分可求解再答:(y+3-5)dy/(
y'-2xy=x^2e^(x^2)[ye^(-x^2)]'=x^2ye^(-x^2)=(1/3)*x^3+C再问:有其他解法吗?看不懂再答:这么解最简单a,等式两侧同除以xe^(x^2)y'e^(-x^2)-2xe^(-x^2)y=x^2明
x^2*dy/dx=xy-y^2dy/dx=y/x-y^2/x^2u=y/xy=xuy'=u+xu'代入:u+xu'=u+u^2xu'=u^2du/u^2=dx/x-1/u=lnx+lnCCx=e^(-1/u)Cx=e^(-x/y)
令y=xuy'=u+xu'代入方程:u+xu'=u^2/(u-1)xu'=u/(u-1)du(u-1)/u=dx/xdu(1-1/u)=dx/x积分;u-ln|u|=ln|x|+C1e^u/u=Cxe^u=Cxue^(y/x)=Cy
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³.(1)∵方程(1)一阶线性微分方程∴由
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³.(1)∵方程(1)一阶线性微分方程∴由
xy'+y=x^2(xy)'=x^2xy=x^3/3+Cy=x^2/3+C/x
特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,C2为积分常数
∵x²dy+(y-2xy-x²)dx=0==>e^(-1/x)dy/x²+(y-2xy-x²)e^(-1/x)dx/x^4=0(等式两端同乘e^(-1/x)/x^4)==>e^(-1/x)dy/x
可以用公式法不过就本题,可以用特殊的技巧显然方程左边=xy'+y=(xy)'=右=x²+3x+2两边积分有xy=x³/3+3x²/2+2x+C所以y=x²/3+3x/2+2+C/x这是通解令C=0,得
注意左边可以写成(xy)'于是,原方程等价于(xy)'=x²+3x+2得xy=x³/3+3x²/2+2x+C得通解y=x²/3+3x/2+2+C/x
xy'+(1-x)y=e^(2x)xy'+y-xy=e^(2x)(xy)'-xy=e^(2x)特征方程r-1=0因此齐次通解是xy=Ce^x设非齐次特解是xy=ae^(2x)(xy)'=2ae^(2x)代入原方程得2ae^(2x)-ae^(