spss 多元回归分析显著性大于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:23:07
非常简单的,多元线性回归是一样的,你直接把因变量选入上面那个框,自变量全部选入下面.然后用逐步回归分析(常用)ENTER哪里下面的第二个.然后回归分析模型主要看有B和Beta那个表格!
不显著就应该剔除,除非你想硬塞进这个自变量,那你只有改数据了
最后一个
截图就不做了,说下大概的操作,1、在spss里variableview里,输入5个变量名称,可用中文.2、然后在dataview里分别录入5个变量对应的数据3、点击analyze--regession
你看每个变量的sig值,如果小于0.05,就说明该变量对因变量有显著影响,反之则没显著影响,beta那一列是回归系数,B那一列是标准回归系数.
对的系数不显著的的提出就行了再问:如果结果中Sig.值都大于0.05,是不是该换个因变量?再答:你的自变量是不是不合理啊再问:怎么看合不合理?
用SPSS的独立样本T检验,可以两两比较或者使用SPSS中的方差分析,也可以判断这三组是否存在着显著性差异
如果你做的是多元回归看beta那列数据绝对值越大影响越大正负号是影响的方向
一个sig大于0.05,一个小于0.05,这是正常的,说明大于0.05的对因变量没有显著的影响而要比较回归系数的大小要看后面的标准化回归系数,因为前面带常数项的回归系数是带有单位的,所以无法判断回归系
从你的回归分析系数的假设检验看出所以系数在0.05的检验水准下都没有统计学意义所以回归方程拟合的效果不好
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
推测是前人的数据进行了标准化.你也用标准化数据回归试试.标准化数据可以用分析-描述统计-描述弹出的对话框中将下面的“将标准化得分存为变量”打勾.然后回归的时候用数据里面新生成的zx1,zx2.数据进行
哪个自变量比较重要吗?看标化系数再问:是标准系数?那回归方程的话最后是用非标准化系数的B还是标准系数呢?谢谢~~~~(>_
常量系数为负是什么意思怎么分析,而且如果在显著性水平sig大于0.5这合理不?第一,常量估计值并不是负的,而是6.353.第二,其它的解释变量中,有三个系数是负值,这说明,这些自变量与因变量是反向即负
以你所选取的自变量拟出的公式与实际的统计值出入比较大,建议去除相关性较小的几个自变量就有可能小于0.05.
"比如假设第一组的数据是838083第二组是896370"是说求这两个组的平均值是否差异显著么?首先,只比较两组数据的话,是用t检验.如果这两组是相关关系,用Paired-SamplesTtest;如
可以的.把P取对数后作为新的因变量,就成为线性的了.可以直接估计.
自变量的地方选入多个变量就可以了.
除了碱度R和常数项以外,其余变量显著性都极低.模型总体显著性也低.最后的P-P图上,散点聚集没有聚集在直线上结论:模型显著性不足,更改模型设定,或采用逐步回归.再问:帮我看看我的原始数据,这个如何处理
打开SPSS,输入数据,再选择分析——回归分析,多元回归