SPSS中F(1.12)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:37:54
如果是自变量只有一个(单因素)做单因素方差分析就可以了,就是楼上说的,点击Analyse——Comparemeans——one-wayANOVA.如果自变量是两个或以上,就要用多因素方差分析了.点击A
F值和T值多少没有绝对的标准的.主要是看你的回归模型是否合理.在进行回归分析之后还要进行残差分析,看模型是否存在异方差,自相关,多重共线性等问题.若是存在异方差、自相关等问题,有可能会高估t值,F检验
置信水平是人为规定的,通常选择0.05或者0.01,在双侧检验中,如果sig小于置信水平的一半则拒绝零假设,如果sig大于置信水平的一半则接受零假设.在单侧检验中,sig小于置信水平则拒绝零假设,大于
SPSS方差分析结果是否显著性,就是看F值的大小和N,它们决定了显著水平的高低.
不同分析方法里面的F值是有些差别的含义的,当然本质上都是属于方差分析的原理.比如就是在方差分析中,可以理解为F值越大,差异越显著,但还是要先看sig的值是否显著,如果sig没有达到显著效果,即使F再大
“*”对应的是显著性水平.如果我没有记错的话,“**”代表在0.01显著性水平下显著;“*”代表在0.5显著性水平下显著,“.”代表在0.1的显著性水平下显著.你看到的参考文献带“*”,说明它在0.0
我不知道F值是什么,但logsitic分析得出的结果就那几个,B值不是,EXPB也不是,95CI也不是,SX也不是,剩下的就是wald值了.所以F值就是wald值.希望对你有所帮助.
方差分析采用F检验的方法进行,结果中的F值表示的是采用F检验公式得到的一个具体数值,按照这个数值查表或其他方法得到相应的P值,即为SIg.所以在结果中一般不去看F值,而是去看sig.一般检验水准为0.
秩rank,是一种数据排序的方式,可以知道某变量值在该列所有值中的名次.秩是对应数值由大到小的,例如有100个数据都不一样的话,最大的数值对应的秩就是100,最小的就是1.有重复数据时候,会按同名称排
方差分析只能判别该因素是否存在显著影响,而不能通过之间的F值来判断影响效果的大小关系,F值的大小和对应的概率值大小说明的是一个意义,而且对于不同的F值大小,存在不同的自由度,而不同的自由度之间是不能相
你说的:“原始标量数据后面会出现新的数据”不是标准化的数据,而是各因子的得分.
R值是你这个曲线的你和程度,就是有百分之多少和你样本曲线相似,F值是这个R值的明显程度,所以你只要看R的百分比大小就可以了.从你做出的结果来看,都不合适啊,而且是明显不适合啊,解释变量的系数都不过0.
不是spss出问题,是你的数据和你的知识水平出了问题我替别人做这类数据分析蛮多的
spss方差分析时,输出的F值不带“*”.你看到有的文献上有带“*”的f值,那是人为标上去的,用于提示读者注意这个f值已经超过了预定的临界值(国内文献的方差分析多为手工计算,无法计算f值所对应的P值)
±3.92这个指在不同的信度水平下的误差区间,即t*残差
改数据就行啊再问:往哪个方向改啊再答:不显著的方向
你再用SPSS做回归时,在选择因变量与自变量的那个窗口的右边,有“选项”这个按钮,点进去有选择是0.05还是其他数值,默认的应该是0.05
Wald是一个卡方值,等于B除以它的标准误(S.E.)的平方值.Wald用于对B值进行检验.
F值不知道呢P可以这样描述:矫正模型显著性为XXX,即该模型是显著/不显著的.从因素的显著性水平为XXX,表示拒绝/不拒绝原假设,即α1,α2,α3……中至少有一个不等于0/不拒绝α1,α2,α3……
应该是用方差分析我是初学者以我的经验看和楼上是一样的"多因素方差分析中可以判断是否存在变量之间的交互作用.在analyse——generallinearmodel——univariate"但是注意选择