spss中卡方检验结果 如果理论频数小于5的cells(格子)比例超过20%

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:16:32
spss中卡方检验结果 如果理论频数小于5的cells(格子)比例超过20%
如何看spss独立样本T检验的结果

1.在F值这一栏中,0.000<0.05,有差异,说明两样本方差不齐.第二栏本来就没有数据的,因为是两样本之间方差齐性比较,只有一个F值.2.有两个t值,是因为计算机把方差齐和方差不齐两种情况的

spss的t检验 结果分析.

看sig.,按照你选择的置信度,一般会默认选择5%,由于你选择双侧检验,所以就是将sig对2.5%对比,如果sig大于2.5%,则可以拒绝原假设,相反则不能拒绝,这里的sig就等于P值再问:所以说在1

spss独立样本t检验结果t值为负值

负值是对照组和研究组的数据进行比较得出的值~·打个比方,对照组的均值是3.50±0.59,研究组的是4.04±0.45T值-4.318也就是说后面研究组的数据大于对照组的~就是负~

求SPSS的卡方检验结果分析?

你有37.5%的期望次数少于5,不能和第一行卡方从自由度看,应该不是4格表,而是R*C表,那就看第二行,也不显著.线性和线性组合:仅用于行变量、列变量都是等级(序次)数据的时候.不知道你的数据是什么情

spss卡方检验结果怎么看

看显著性看P值,也就是sig.值,P

spss卡方检验结果分析

看第一个Pearson检验结果P值为0.000,得看你的置信水平是多少如果说小于你的置信水平就显著性差异再问:置信水平是多少怎么看?再答:置信水平是你自己给定的一个水平一般都是0.05

spss 独立样本t检验结果分析

第一行结果P(0.001)

spss独立样本T检验的结果分析

首先是方差齐性Levene'sTest的sig大于0.05,属于方差齐性第二个表的sig(双侧检验)值0.108大于0.05,则说明性别差异差异不显著

如何看SPSS配对样本T检验结果?

你做了3次相关样本t检验第一个表是描述性统计量,有平均数、样本量、标准差、标准误第二个表是相关系数,都不相关第3个表是相关t检验的结果,关键看最后3列,t值、自由度、p值.你没有列出p值,只看到自由度

SPSS中SNK检验结果如下

每一栏竖着的下面的显著性为1,指的是归到这一栏里面的组之间的显著性,你这个每一栏只有一组,当然显著性只是1了你这里的结果三组分别分到了三列当中,说明三组之间均存在显著的差异,一组比一组低.

怎么阅读SPSS卡方检验的结果

Chi-Square就是卡方的意思,因此你的结果的卡方值等于9.910;df指的是自由度;ASYMP.sig就是我们常说的P值,因此P=0.007;一般来说,只要P值小于0.05就认为结果有显著性差异

spss单样本T检验的结果怎么解释

单样本t检验就是用于检验一列变量均值与某一特定数字间有无统计学差异.结果主要看最后那个表,一是看t值,二是看sig(双侧),若sig

spss中独立样本T检验结果看不懂

1.在F值这一栏中,0.0000.05说明结果无差异.另外,如果F值这一栏中两样本方差齐的话.结果看第一栏中,t=0.028和P值就行了.在sig.(2-tailed)中,两栏的数据时都是0.978很

SPSS卡方检验的结果分析!【重要】

这里面有好多种情况:如果理论次数小于5的格子不超过20%(你的表里是0),而且没有理论次数小于1的情况,使用第一行Pearson,表格里p>0.05,所以差异不显著.否则就用似然比卡方检验.还有一个线

SPSS卡方检验结果怎么看啊

卡方值=7.36,p=0.599>0.05,故接受原假设,可认为年级与消费金额之间是独立的,即相关系数r=0.

spss成对检验结果求解释,看不懂

配对设计t检验就是比较两组均数的差别主要还是看p值,也就是sig不过,前提是你要会用配对t检验,不要用错方法了我经常帮别人做这类的数据分析的

SPSS结果的分析?t检验结果的意义

方差检验用的F统计量,均值检验用的是t统计量!F值后面的sig>0.05,说明接受原假设,即方差相等,在这个假设成立的情况下,检验均值是否相等,也就是后面的t检验,t后面的sig=0.00

SPSS duncan检验结果如下,如何用字母标记?

你这个是事后比较的一种方法得出的结论吧这个结果的解释就是d处理组的得分显著低于c和b处理组,c和b处理组得分又显著低于a和h处理组,而a和h处理组又显著低于f、i、k、e组,f、i、k、e组得分又显著

spss中独立样本T检验结果不会看

1F是方差检验,用方差齐性检验表来查表2sig是P是,即统计量t对应的面积3t是计算的出的检验统计量4两栏都是,说明是双侧检验所有的数据表明有差异,因为P值小于0.05,有统计学意义