spss回归分析自变量对中介变量不显著怎么办
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:11:29
第二个表说明拟合度,0.996,接近1,说明模型拟合不错;第三个表看F值就好,相当大,在95%甚至99%置信度下显著;第四个表说明自变量X(营业收入)系数为0.891,并且是在95%甚至99%置信度下
用典型相关分析,做不到你说的回归分析,回归需要因变量只有一个,你可以用因子分析提取一个共因素,然后再进行回归
给你举个例子来说明吧左表的数据是对数年来国内旅游者的旅游花费与自由自配收入、闲暇时间的调查数据.(数据是假设的)目的:试进行多重回归分析,求出回归方程式,来年若闲暇时间没有变化,但自由自配收入较之今年
这个是比较两个模型的差异,有差异就说明你的中介变量有作用再问:两个模型的差异再怎么比较?能具体说明下吗?
如果你的分析方法是正确的话,这个结果是能够说明的变量3在该模型中是有贡献的,有意义的,而变量1并不显著,对Y影响不大.
可以的,f值为8.14,p值小于0.05,说明回归模型是有意义的
R平方就是拟合优度指标,代表了回归平方和(方差分析表中的0.244)占总平方和(方差分析表中的0.256)的比例,也称为决定系数.你的R平方值为0.951,表示X可以解释95.1%的Y值,拟合优度很高
(1)中F伴随的p值小于0.001,是怎么看出来的?(2)常数在0.005下显著,以及x1在0.001下显著是怎么看出来的?就是看最后一列的sig值,就是P值.它小于显著性水平,比如0.05,就显著.
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
因为逐步回归程序会帮你把不显著(没有作用的)自变量删除了,只保留重要的、有意义的变量.如果你想把所有变量都保留的话,请选择强制法(enter)进行回归分析.
请参照下列操作.系数(a)模型 非标准化系数 &
Statistics菜单的Correlate选项->PartialCorrelations过程看看控制var1(自变量)之后,var2(中介变量)与var3(因变量)之间的相关系数(Correlati
这种情况很正常知道吗因为在计算相关系数时,得到相关系数0.21,说明相关性不是很强,但通过检验了,说明在总体中AB也存在这种相关关系而回归分析是,我想你应该是建立一元线性回归吧,但没有通过检验,这种一
一看判定系数R方,本例中,R方=0.202,拟合优度很差.一般要在0.6以上为好.至少也在0.4以上.二看系数估计量的sig值,其中,独董规模的sig=0.007,小于0.05,说明该变量对因变量有显
不用输,直接将excel导入SPSS,然后再对变量进行设置
多重共线性的处理的方法(一)删除不重要的自变量自变量之间存在共线性,说明自变量所提供的信息是重叠的,可以删除不重要的自变量减少重复信息.但从模型中删去自变量时应该注意:从实际经济分析确定为相对不重要并
abcde是一个问题的五个选项?是分类变量还是连续性的变量如果是分类变量需要转变成哑变量才能回归,如果是连续性的变量可以直接纳入回归中另外回归分析要看散点图呈现线性关系可以用线性回归,对因变量要求为连
除了碱度R和常数项以外,其余变量显著性都极低.模型总体显著性也低.最后的P-P图上,散点聚集没有聚集在直线上结论:模型显著性不足,更改模型设定,或采用逐步回归.再问:帮我看看我的原始数据,这个如何处理
你这个问题可能是两者是一种对称关系,就是相互都可以做自变量和因变量,即相互影响的关系.比如说,努力工作与获得财富之间的关系,在努力工作之后就会获得很多财富,同时,获得财富之后又会促使其努力工作,这就是
你直接用SPSS的菜单上的回归就可以做了,有向导的,你跟着做就是了,最后就会得到结果,至于99.7%的参数中间有一步你可以自己改参数的