spss多元回归方程各变量系数怎么进行显著性检验
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:07:20
在菜单中找到analyse,regression,选择linear就可以了,打开对话框,选择自变量,因变量,OK就可以了
最后一个
截图就不做了,说下大概的操作,1、在spss里variableview里,输入5个变量名称,可用中文.2、然后在dataview里分别录入5个变量对应的数据3、点击analyze--regession
不可能有图的两个变量可以在二维空间即平面上作出图形三个变量可以在三维空间作出图形(空间解析几何)四维及以上的就根本不可能做出来了!三维的可用MATLAB再问:比如用spss软件已经做出二元线性回归方程
纳入虚拟变量即可我替别人做这类的数据分析很多的
你看每个变量的sig值,如果小于0.05,就说明该变量对因变量有显著影响,反之则没显著影响,beta那一列是回归系数,B那一列是标准回归系数.
亲,你说清楚点,什么叫每个变量都是矩阵形式,是说一时间为维度吗?用spss是可以做回归的,包括一元和多元回归.
sig要小于0.1是10%水平上显著sig=0说明在1%的水平上显著,比10%水平要求更高
如果你做的是多元回归看beta那列数据绝对值越大影响越大正负号是影响的方向
用SPSS进行多元回归以后,系统会自动给出x1、x2和x3(从大到小)的R的平方和,相减就是解释率.
如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
有意义,只要方差检验通过,那就说明模型可以反映自变量与因变量之间的关系,而且可以较好的表达(我这里说的是一般情况,如果遇到特殊情况还需要看自变量与因变量的散点图关系).方差检验和自变量参数检验都是检验
标准系数是指数据标准化以后算出来的系数,非标准化系数就是用你原来的数据算出来的系数,如果你想写出你的回归方程的话,就要看非标准那一栏的B下边的系数哈.ppv课,专业的视频网站,想学spss吗?就来pp
在SPSS软件统计结果中,不管是回归分析还是其它分析,都会看到“SIG”,SIG=significance,意为“显著性”,后面的值就是统计出的P值,如果P值0.01
模型摘要模型RR方调整的R方估计的标准差1.838a.703.5057.00366a.预测变量:(常量),综合指标Z,附加济掺量,水灰比,砂率.ANOVA(b)模型平方和df均方F显著性1回归695.
可以的.把P取对数后作为新的因变量,就成为线性的了.可以直接估计.
用参数估计法,它提供了好几种模型,你可以选择上所有的然后看你的哪个R方最大.就行了.如果感觉都不好,就用非线性回归自己写方程.不过那个药大概知道你的方程的形状,然后设好初始参数就可以.ppv课学习网站
肯定不行啊没有意义哦再问:就只是变量的sig值太大,别的都没问题吗??再答:sig值太大,别的就不用看了啊没有用了
除了碱度R和常数项以外,其余变量显著性都极低.模型总体显著性也低.最后的P-P图上,散点聚集没有聚集在直线上结论:模型显著性不足,更改模型设定,或采用逐步回归.再问:帮我看看我的原始数据,这个如何处理