SPSS怎么判断相关性和是否显著
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:15:08
*代表p再问:能具体说说表格中每个数字的意思吗?比如表中哪个数字代表P值,哪个数字代表样本量等等再答:。。。。55是样本量,0.003是p,你这完全不懂,还是别自己瞎做再问:那1和0.399呢?
在Analyze下拉菜单的Correlate命令项具有三个相关分析功能子命令它们分别是BivariatePartial和Distance对应于相关分析偏相关分析和距离分析1Bivariate计算指定的
分析—描述统计—交叉表,如上图,选中行变量和列变量后,点统计量,选择“卡方”,继续,确定.结果图看sig值,若小于0.05,说明差异显著.统计人刘得意是否可以解决您的问题?再问:能给我截个图看看吗?我
相关分析,和是否保留变量没任何关系你说的是相关分析的显著性如果不显著,2个原因1是你设计有误,数据收集的质量控制不好2是数据原本如此,不能改变事实我经常帮别人做这类的数据分析的再问:额,我发现是版本问
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
你看相关系数较大的是哪几个变量啊,从相关分析表里就可以很直观的看到
你问的是2个问题吧,如果做一元线性回归,就不用检验相关性.下面只是简单说下操作,1、一元线性回归在spss里录入相应数据,自变量x,因变量Y,然后点击:analyze--regression--lin
非参数检验中的游程检验:单体样本变量值随机性检验,检验样本是否呈现随机性分布,可用于非数值型数据的随机性检验而白噪声是用于时间序列数据的纯随机性,包括纯随机性和方差齐性两个方面
相关系数是0.357,p=0.009,显著的我替别人做这类的数据分析蛮多的再问:意思是二者有相关性且较为显著吗?可以简单说下怎么看吗QAQ
“员工缺勤率”下面有两个分支问题(变量)你可以采取下列两种方法来处理1、你可以将员工缺勤率下面的两个分支变量合并成一个,譬如,假如你把员工缺勤率分为员工迟到次数和员工早退次数的话,你就可以把这两个加起
Graphs*Scatter*Simplescatterplot
如果是两个组之间做相关分析,即两个变量之间的相关分析.不论一共有多少个组,都使用双变量相关分析,具体操作如下.分析-相关-双变量-将要比较的所有组都移入右边的“变量”框选项根据自己的需要进行勾选相关系
一般统计分时所做的相关是指Pearson相关或者Spearman相关,而Losgistic回归也即多元回归分析是一个更高层次的相关分析,数据要求质量比较高.如果数据用Pearson相关或者Spearm
应该是用重复测量的方差分析来做的
你这是单侧检验啊,你做的对不对?
9个样本数据计算出的平均每日转发数与相关微博搜索量的pearson相关系数值0.905,它的实际显著性水平为0.001,小于理论显著性水平0.01,说明相关系数的值不是由偶然因素造成的,0.905接近
用相关分析和回归分析,然后根据回归分析写出回归方程,如果还不会,看我们的用户资料,联系我们
分数没用的你有什么问题直接说我经常帮别人做这类的数据分析的再问:那我加您,辛苦了,我的问题都挺基础的...
可以将被剔除的变量做回归分析,但如果相关系数过高,可能会产生多重共线性(参数t检验无法通过),到时候可以去剔除法或者SPSS的逐步回归法做就行第一个图是方差分析表,其实意义不需要过多强求,主要看F值对
看sig啊再问:total那行是什么意思?再答:总变异