spss的非参数检验结果怎么看显著性差异
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:51:28
1.在F值这一栏中,0.000<0.05,有差异,说明两样本方差不齐.第二栏本来就没有数据的,因为是两样本之间方差齐性比较,只有一个F值.2.有两个t值,是因为计算机把方差齐和方差不齐两种情况的
前面的几个表是回归分析的结果,主要看系数0.516,表示自变量增加一个单位,因变量平均增加0.516个单位.后面的sig值小于0.05,说明系数和0的差别显著.还要看R2=0.641,说明自变量解释了
SNKLSD或者dunett都是基于方差分析的,不适用于非正态的检验,K-W检验如果得到拒绝H0的结果,认为总体分布不同,要进一步确定哪两个总体分布不同,需要使用Nemenyi法检验.这个检验在SPS
你的数据多少了,一般情况下如果数据量不超过30个,以t检验的结论为主当然你如果非要它显著的话,也可以直接采用非参数检验的结论,也不能说错,因为能够用参数检验的方法都可以采用非参数检验,只不过非参数检验
看sig.,按照你选择的置信度,一般会默认选择5%,由于你选择双侧检验,所以就是将sig对2.5%对比,如果sig大于2.5%,则可以拒绝原假设,相反则不能拒绝,这里的sig就等于P值再问:所以说在1
第1题,用卡方检验,但是由于有的单元格频数小于5,应该使用Fisher精确检验.结果见下图:0.073即Fisher精确P值,大于0.05,表明在0.05的显著性水平上接受原假设,认为两组疗效差别不显
就看SIG显著度如果大于0.5就是说明拒绝原假设,也就是说数据是正态或者泊松分布反之亦然上面那句话的意思是你的数据不能做泊松分布的检验你看一下泊松分布是概率分布,不是所有的数据都可以进行泊松分布检验的
看显著性看P值,也就是sig.值,P
单样本K-S检验正态分布的结果,只要看sig值就可以了,当sig值大于0.05,说明你要检验的数据分布和正态分布没有显著差异,即你的数据属于正态分布.那个人误解了原假设和研究假设,在统计中,原假设H0
你做了3次相关样本t检验第一个表是描述性统计量,有平均数、样本量、标准差、标准误第二个表是相关系数,都不相关第3个表是相关t检验的结果,关键看最后3列,t值、自由度、p值.你没有列出p值,只看到自由度
最好是描述一下,就简单描述一下.结果的话,主要看的是p值.p值大于0.05,接受原假设,p值小于0.05,拒绝原假设.再问:可是用软件做出来的t值在结果里面是哪一个呢?这个好像比较少用到t值再答:你指
Chi-Square就是卡方的意思,因此你的结果的卡方值等于9.910;df指的是自由度;ASYMP.sig就是我们常说的P值,因此P=0.007;一般来说,只要P值小于0.05就认为结果有显著性差异
1、看组间效应比较,看自变量和协变量有没有显著,2、看修正均数有没有显著,即扣除X的影响后,Y值是否有统计学意义的差异;3、看修正均数的方差分析.协方差主要就是看修正均数,剩下的步骤其实用回归也可以做
单样本t检验就是用于检验一列变量均值与某一特定数字间有无统计学差异.结果主要看最后那个表,一是看t值,二是看sig(双侧),若sig
SPSS里crosstabs的卡方检验用于列联表行变量与列变量的独立性检验,而非参数检验中的卡方检验属于卡方拟合优度检验,用于考察多分类变量数据的拟合情况(例如星期一至星期五这五个工作日的销售量是否一
卡方值=7.36,p=0.599>0.05,故接受原假设,可认为年级与消费金额之间是独立的,即相关系数r=0.
s是双尾p值,不是点概率函数值,是原假设正确的概率值.
显著性水平>0.05说明在现有样本中,自变量对因变量的影响不显著.有时不显著也是一个很重要的结论,说明原来的假设不成立.如果认为不显著的结论有悖相关原理,则可能是数据有问题,建议增加样本数量,或检查数
非参数检验就是在不了解总体的分布情况下的检验方法,这就是区别于t检验的特点.两配对样本t检验:检验一组数据变化前后是否存在差别,此时数据不是独立的,比如说喝减肥茶前后人的体重是否存在明显差别,两组数据
1F是方差检验,用方差齐性检验表来查表2sig是P是,即统计量t对应的面积3t是计算的出的检验统计量4两栏都是,说明是双侧检验所有的数据表明有差异,因为P值小于0.05,有统计学意义