spss碎石图怎么看
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:56:52
*代表p再问:能具体说说表格中每个数字的意思吗?比如表中哪个数字代表P值,哪个数字代表样本量等等再答:。。。。55是样本量,0.003是p,你这完全不懂,还是别自己瞎做再问:那1和0.399呢?
只要在1-7个列中,同处一列的就是没有差异,你的表中,左边从9往下一直到12是按平均数从小到大排列的,9、20、16、8、14、13、3之间是没有差异的,9和1以下的都有差异;20、16、8则和6以下
前面的几个表是回归分析的结果,主要看系数0.516,表示自变量增加一个单位,因变量平均增加0.516个单位.后面的sig值小于0.05,说明系数和0的差别显著.还要看R2=0.641,说明自变量解释了
ModelSummary是对模型拟合效果的总结,R是相关系数,R2是决定系数,系数越大表面拟合效果越好.ANOVA是方差分析,然后F检验Coefficients就是回归结果,得到的回归方程的系数
A1和A2之间的相关水平为-0.663,达到了非常显著的水平.B1和B2B3B4之间的相关水平分别是-0.501、-0.616、-0.501,都达到了非常显著的水平.这里是负相关,表示的是当一个变量的
spss分析结果中不是用字母P来表示,而是sig.来表示的
你这里做的是单样本T检验,一般我们是看t值对应的sig值来看,是否通过检验,当然也可以直接看t值,如果t值的绝对值越大,说明你的样本数据和比较的数据越显著差异
看显著性看P值,也就是sig.值,P
就是看p值啊我替别人做这类的数据统计分析蛮多的
看sig,再问:那这样的模型可以用吗再答:嗯,有意义的再问:F值感觉很大啊,我参考的文章上面才20几,这个要紧么
1、看组间效应比较,看自变量和协变量有没有显著,2、看修正均数有没有显著,即扣除X的影响后,Y值是否有统计学意义的差异;3、看修正均数的方差分析.协方差主要就是看修正均数,剩下的步骤其实用回归也可以做
你的问题提错地方了这里是心理学版块
KMO检验用于检查变量间的偏相关性一般认为该值大于0.9时效果最佳0.7以上尚可,0.6时效果较差Bartlett's球形检验用于检验相关阵是否是单位阵P
连续型变量用Pearson相关,分类变量Spearman相关第一个表看对应的相关系数-0.098,P值0.002,小于0.05,有统计学意义.说明存在弱的负相关.第二个图就是两个变量的均值与标准差.再
显著性水平>0.05说明在现有样本中,自变量对因变量的影响不显著.有时不显著也是一个很重要的结论,说明原来的假设不成立.如果认为不显著的结论有悖相关原理,则可能是数据有问题,建议增加样本数量,或检查数
就lambda系数而言,你的猜测都是对的,第一列“值”给出的就是lambda系数,最后一列渐进sig是对系数进行显著性检验的结果.但从你的问题来看,你在这里采用lambda系数考察不同性别的户籍和工作
你这个表里只有回归系数的信息你所要的相关系数应该在上一个表中R方是确定系数R就是你所说的相关系数了你自己找找看上一个表有没有一个R傎,那就是相关系数了
既然可以不要求特征根植大于1,那自然成分的数量就可以根据你自己的情况来定了,你可以结合专业情况看多少个主成分能够把你的主要内容基本涵盖进去那就确定多少个如果只是单纯的看这个图,就会出现不同的观点,没有
因子分析——降维——旋转矩阵——碎石图打勾
在你做因子分析(factor)的时候options选项中选中**plot就行了忘了具体叫什么了