spss逐步分析进入模型是什么意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:45:11
_问题描述:在SPSS中做主成成分分析的时候有一步是指标之间的相关性判定,我想知道具体是怎么进行判定的,他的算法、原理是什么?答案1::说判定有些严格,其实就是观察一下各个指标的相关程度.一般来说相关
说判定有些严格,其实就是观察一下各个指标的相关程度.一般来说相关性越是高,做主成分分析就越是成功.主成分分析是通过降低空间维度来体现所有变量的特征使得样本点分散程度极大,说得直观一点就是寻找多个变量的
常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:
要看sig值,那个就是P值,如果是小于0.001,一般情况下是显著的再问:不是说sig只要小于0.05就行么?再答:对的,看是在什么水平下,0.05也行再问:只要看sig么?其他值都不用看了?再答:是
五力分析模型是迈克尔·波特(MichaelPorter)于80年代初提出,对企业战略制定产生全球性的深远影响.用于竞争战略的分析,可以有效的分析客户的竞争环境.五力分别是:供应商的讨价还价能力、购买者
这个可以在非线性回归中直接做,如果你不会,可以先将这些非线性模型转换成线性的再进行回归.比如第二个模型,你先将ln(8-Q)求出来,记作Y,然后再用Y=-kt进行线性回归,不知道你是否明白我的意思,这
两个模型都拟合的很好,首先可以比较一下解释量R方,一般R方较大的比较好;另外还应考虑实际规律以及专业常识,比如说三次方模型的因变量和自变量是正相关关系,但实际上你所观察的变量之间应该是负相关关系,这就
spss一般都建议选择最后一个模型这是逐步回归的基本常识我经常帮别人做这类的数据分析的
有点低.你有几个变量再问:四个自变量,两个控制变量,两个因变量。拟合度和变量个数有关系?再答:如果是管理学的实证分析拟合度不是最重要的问题再问:这样啊,我是学管理的,顺便问一下,用spss做回归分析的
因为逐步回归程序会帮你把不显著(没有作用的)自变量删除了,只保留重要的、有意义的变量.如果你想把所有变量都保留的话,请选择强制法(enter)进行回归分析.
50分的问题……果然好麻烦的说,因为涉及很多检验没用SPSS做过时序,说Eviews吧打开你要建模的序列,假设是x,点这个变量窗口工具栏里的view-correlogram.这里有几个参数:level
可以建议用eviewseviews做自相关分析、异方差检验还是比较专业的
logit回归的结果一般不去太在意方程.数据发我,我看看再问:大哥(姐),做财务预警模型要有ST公司,我想问一下找得到30或35家2010年被首次ST的公司吗?
不能,所谓的模型是能够提供预测效果的相关分析仅仅是一个笼统的讨论两个变量之间是否有关系,但是这个相关性的大小也不是他们之间的实际相关性,所以不能算作模型
做有序回归,不是去看R2,没用的coxandsnell是伪R2,已经不是你理解的R2了我经常帮别人做这类的数据统计分析再问:那应该看哪个呢?可不可以说一下这三个表分别表示什么意思呢?
也就是说你用几个维度的平均分作为因变量,然后再用这几个维度的得分作为自变量?这样求的回归自然是r=1了,r=1说明自变量与因变量呈完全的线性关系.这就好比用自己解释自己,完全没有意义再问:你说的我明白
这是正常现象.在SPSS多元线性逐步回归中,早先已经进入方程的变量可以又被踢出来.多元线性逐步回归要求能留在方程中的变量必须要同时符合2个条件:一是对模型必需要有足够的影响力,二是对不能方程中的其他变
主成份分析是为了提前众多指标中有典型代表性的几个主要成分,其中主成分的一种计算得分方法是用回归方法而回归分析是为了构建一个自变量和因变量的关系模型,从而可以找到有效的预测因变量的方式所以回归分析需要有
对数线性模型和logistic回归都属于一般线性模型,结果也是很类似的.照着logistic分析结果看吧.或者看看王彤2008年新出的书.很详细.推荐一下.
enter是全部进入,即选择的所有因素进入模型,只是用于了解自变量对应变量的的解释情形,.stepwise又称逐步回归法,以最少的变量来达成对应变量最大的预测解释力,即一些不具有统计意义的变量被一步步