stata中logit回归结果 Z值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:43:24
三个变量g,m,s和常数项;其中只有size显著,可以看其t值和p值,p值小于0.05,所以其在95%置信度下显著.拟合度较低,查看adjR-squared,越接近1拟合度越高,此模型拟合度较差.模型
你先生成虚拟变量,然后把那些虚拟变量作为自变量加入到命令中,和普通变量做回归是一样的.
你的变量明显太多了.变量太多会起到混淆作用,而且如果有分类变量,设置成虚拟变量拟合效果会更好.你看看你的伪r方表是不是也很糟糕?是的话就是你的模型很坏呗.ppv课,大数据培训网站,免费的spss学习视
在SAS中可以试试procglmdata=dataordr=data(或freq);classratio;modely=x1x2ratio/solution;run;这里procglmwillgene
有helpestat
稳健性的意思
木有一个变量是显著的……所有变量的p值都好大的说~整个模型的p值也很大……结论就是这个模型本身统计不显著,各个变量也不显著.看回归分析结果,你先看右上角那个prob>F,那个是对整个模型的检验,如果这
抛开数据本身和模型的问题,但看回归结果的话,第一个结果比第二个好:一是模型整体的拟合优度即adj-Rsquared比较高,二是显著性水平即P值比较低.再问:请问一下表格里的t值代表什么?还有P>|t|
这种model的R^2的值已经完全没有讨论的意义了,只要F值是显著的significant的就可以了.你的结果中,independentvariables当中,只有power(5%显著),Edu(1%
不太清楚意思,如果你说的是,对变量在某个区段内回归比如按年月,再按编号分别做回归,共i*j个回归方程,那就用bysortij:gen就可以啦.如果是面板数据,就按面板数据的方法做.
第一次回归的模型要进行模型误设检验,如Link检验或Ramsey检验,如果检验没有通过,则表示存在遗漏变量,这时要加入控制变量.第二次回归的模型要进行多重共线性检验.很有可能你在第二次回归加入的C和D
结果的前两行表示模型的类别,LZ采用的为randomeffect随机模型,截面变量:province,样本数目310.群组数目31,也就是每组10个观测值.3-5行表示模型的拟合优度,分别为withi
在stata中有个metareg命令,好像可以对连续变量进行回归分析. 附件中是一篇pdf文档,主要介绍stata中关于meta分析的命令.跟大家分享一下. 里面在提到metareg命令时,列举了
1.写出拟合方程Y=0.0439636-0.1104272ret+0.3015505drret+0.0003205vr+0.0130717drvr+0.0061625retvr+0.0501226dr
没有一个变量是显著的讲土点就是做的毫无意义
恩,数据发过来吧我经常帮别人做这类的数据分析
如果是binarychoice的话用logit,stata用logit的命令就行吧.如果是有很多choices,就用multinormiallogit,stata的命令是mlogit.
在stata中多元的logit命令是:mlogityx,base(1)y是你的因变量x你的自变量base(1)的意思是你选择第一选项为参照项
我晕,白写了啊,刚才不小心改掉了.首先说觉得你这个方程回归的不好,R系数太小,显著性不好.F值应该大于该自由度下查表的值才行,所有的t值大于查表得到的值,这样从方程到参量全部显著.不过受制于原始数据,
回归有很多种呀,你要做哪种回归?如因变量y对自变量x的线性回归:regressyx因变量y对自变量x1、x2、x3的线性回归:regressyx1x2x3因变量为二分变量的y对自变量x1、x2、x3的