t=arcsinx a求cost
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:31:33
再问:果然是大神呀。。
dx/dt=(e^t)sint+(e^t)cost=(e^t)(sint+cost)dy/dt=(e^t)cost-(e^t)sint=(e^t)(cost-sint)dy/dx=(dy/dt)/(d
∵x=1+t²,y=cost==>dx/dt=2t,dy/dt=-sint∴d²y/dx²=d(dy/dx)/dx=(d((dy/dt)/(dx/dt))/dt)/(dx
t是什么?是θ吧?x=rcosθy=rsinθdy/dx=(sinθdr+rcosθdθ)/(cosθdr-rsinθdθ)将θ=2pi/3、r=0.5、dr=d(1+cosθ)=-sinθdθ代入有
dx/dt=2tdy/dt=-sin(t)dy/dx=-sin(t)/2t同理:d²y/dx²=-cos(t)/2
S=4倍∫(上限π/2,下限0)A(SIN三次方)Td(A(COST三次方)T)用参数方程解
因为dx/dt=1+costdy/dt=1-sint所以dy/dx=[dy/dt]/[dx/dt]=(1-sint)/(1+cost)又x'(t)=1+cost>=0,x(t)单调不减于是得x=t+1
=(1+e^t)/(2-sint)不通,看书.
dy/dx=y'(t)/x'(t)=(sint+tcost)/(1-cost+tsint)再问:要过程谢谢再答:dy=y'(t)dt.dx=x'(t)dt=>dy/dx=y'(t)/x'(t)
首先求导数y'=1/(2根号x)所以切线斜率为1/2根号4=1/4故法线斜率为-4所以切线方程为y-2=1/4(x-4)法线方程为:y-2=-4(x-4)你自己在化简一下就行了
eqns={x'[t]+y[t]==Cos[t],y'[t]==-x[t]+Sin[t]};sol=DSolve[eqns,{x,y},t]
∵(sint+cost)^2=1+2sintcost=1/9∴sintcost=-4/9∵t∈(0,π)∴sint>0∵sintcost
直接用公式吧:这是参数方程先各自求个导:x'(t)=a(1-cost)y'(t)=asintL=积分:(0,2*pi)[x'^2(t)+y'^2(t)]^(1/2)dt=积分:(0,2pi)(2a^2
dy/dx=(dy/dt)/(dx/dt)=-sint/2td²y/dx²=d(dy/dx)/dx=[d(dy/dx)/dt]/(dx/dt)=d(-sint/2t)/dt/2t=
解dy/dx=(1-sint)'/(t²+cost)'=(-cost)/(2t-sint)
dy=lnt+1dx=1-sintdy/dx=(lnt+1)/(1-sint)
∵x=a(t-sint)∴dx=d[a(t-sint)]=(a-cost)dt∴y=a(1-cost)∴dy=d[a(1-cost)]=asintdt∴dy/dx=(asint)/(a-cost)再问
dy/dt=e^t(cost+sint)dx/dt=e^t(cost-sint)所以dy/dx=(dy/dt)/(dx/dt)=(cost+sint)/(cost-sint)=1/)cos²
∫tcostdt=∫td(sint)=tsint-∫sintdt,分部积分法=tsint+cost+c
直接求导,根据导数也就是微商的定义y'=dy/dx=(dy/dt)/(dx/dt)=-sint/cost=-tgt当t=Pi/4时,y'=-tgt=-1,并且曲线过点(sqrt2/2,sqrt2/2)