tan(x 1)的定义域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:38:48
由于是任意的x1,x2∈(-∞,0)(x1≠x2),令x2=x+c(c趋近于0)x1=xlim(f(x+c)-f(x))/(c)
用图象来证明,不好说啊总之这个是凹函数的一个性质,你把tanX的图象的(0,pi/2)部分的图象画出来,然后随便在(0,pi/2)内取两个点令X1,X2,把X1,X2对应的函数值在图象上标出来然后给两
y=1/lg(5-x):5-x>0又lg(5-x)不等于0所以5-x不等于1所以定义域为x
sinα、cosα定义域无穷,值域【-1,+1】tanα的定义域(-π/2+2kπ,π/2+2kπ),值域无穷
这是琴生不等式,第一个分三种情况:x1>0,x2>0,f(x1)=x1,f(x2)=x2,f[(x1+x2)/2]=(x1+x2)/2=[f(x1)+f(x2)]/2,同理,当x1,x2均小于0时,亦
1.求F(0)的值F(x1)+F(x2)=2F((x1+x2)/2)F((x1-x2)/2),x1=x2=x2F(x)=2F(x)F(0)F(0)=1F(x)+F(-x)=2F((x-x)/2)F((
tanx定义域是(kπ-π/2,kπ+π/2)则kπ-π/2
tanx的定义域是x≠kπ+π/2因为-1
y=2^|x|所以y=2^(-x)(x<0)=2^x(x≥0)因为值域是[1,2]那么[a,b]的长度最大时是[-1,1],此时长度是2长度最小时是[-1,0]或[0,1],此时长度是1所以区间[a,
f(3)小于f(-2)小于f(1)由题意知道函数在正半轴单调减,所以f(3)小于f(2)小于f(1)因为是偶函数,所以f(-2)=f(2)所以f(3)小于f(-2)小于f(1)
/>1.∵f(X1)+f(X2)=2f{(X1+X2)/2}f{(X1-X2)/2},令X2=X1,得2f(X1)=2f(X1)f(0),即有f(X1)[1-f(0)]=0又∵对任意实数x1上式都成立
二楼的请问,那样能够得出答案吗?3/4难道不是大于1/2?f(1/3)=1/2f(1)=1(1-f(1-1))/2=1(1-0)/2=1/2;又f(1/3/3)=f(1/9)=f(1/3)/2=1/4
正切函数定义域是x!=pai/2+k*pai,因此以上函数定义域是pai/4-x!=pai/2+k*pai即3/4*pai+k*paik=0,1,2...
cosx的值域是[-1,1]定义域是Rsinx的值域是[-1,1]定义域是Rtanx的值域是R定义域是{x|x≠kπ+π/2}再问:怎样求再答:可以画图,根据图形可得再问:不会再答:课本上应该有吧取五
F(1-X)=1-F(X),当x=0,可得F(1)=1-F(0)=1F(1-X)=1-F(X),当x=1/2,可得F(1/2)=1-F(1/2)可得F(1/2)=1/2F(X/3)=1/2F(X),当
(1)证明.令x1=x2=1,则有f(1)=f(1)+f(1),f(1)=0令x1=x2=-1,则有f(1)=f(-1)+f(-1),f(-1)=0令x1=-1,x2=x,则有f(-x)=f(-1)+
tanx/2>0kπ再问:要过程。再答:写错了。。。y=ln(tanx/2)tanx/2>0所以kπ
当x=派/2+k派时,tanx=∞,无意义;当x≠派/2+k派时,tanx≠∞,有意义.故tanx的定义域为﹛x|x≠派/2+k派﹜k为整数要使cotx=1/tanx有意义,除了要使tanx有意义即x
前一个是全体实数,后一个是X不等于K派+二分之派