tan^10xsec^2xdx的不定积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:14:06
tan^10xsec^2xdx的不定积分
不定积分∫根号下tanx+1/cos^2xdx

∫√(tanx+1)/cos²xdx=∫√(tanx+1)*sec²xdx=∫√(tanx+1)d(tanx)=∫√(tanx+1)d(tanx+1)=(2/3)(tanx+1)^

定积分【0,π^2】sin根号xdx

令√x=t则原式=∫(0→π)sint*2tdt=-2∫(0→π)td(cost)=-2tcost|(0→π)+2∫(0→π)costdt=-2tcost|(0→π)+2sint|(0→π)=2π

∫tan^2xdx=∫(sec^2x-1)dx

∫tan^2xdx=∫(sec^2x-1)dx=∫sec^2xdx-∫1dx=tanx-t+C

请解释高数例题:1、∫tan ^2 x sec xdx 2、∫1/x^2+4 dx 3、∫tanx dsec^(n-2)

==建议你还是先把前面的基本积分公式背熟在来做题吧.1∫tanxsecx=secx所以原式里面的tan^2xsecx可以拆成(tanxsecx)*tanx把(tanxsecx)代到后面变成secx.利

用定积分定义求 ∫(-1,2)xdx

再问:再问:第三题怎么做

问高数求导 ∫sin^3xcos^2xdx

∫sin^3xcos^2xdx=-∫sin^2xcos^2xdcosx=-∫(1-cos^2x)*cos^2xdcosx=-∫(cos^2x-cos^4x)dcosx=(1/5)*cos^5x-(1/

①∫tan^10×sec^2xdx②∫[x/√(x^2-2)dx③∫[(2x-3)/(x^2-3x+8)]dx④∫(1/

同学,你这个题目写得不清楚第一题就看不明白2,原式=(1/2)∫1/√(x^2-2)d(x^2-2)=√(x^2-2)(注:第一步之后将x^2-2看成整体,可令其等于t这样看得清楚点)3,字数不够,接

求不定积分∫xtanx(sec^2)xdx!

原式=∫xsinx/cos^3(x)*dx=-∫x/cos^3(x)*d(cosx)=1/2∫xd(1/cos^2(x))=x/(2cos^2(x))-1/2∫dx/cos^2(x)=x/(2cos^

∫√1+tan²xdx等于多少

首先1+tan²x=1/cos²x,所以∫√1+tan²xdx=∫1/cosxdx而∫1/cosxdx=∫cosx/cos²xdx=∫1/(1-sin²

求不定积分 ∫xe^2xdx

1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x

求不定积分∫x^2 ln xdx

用分部积分法,先把x^2放到dx里面然后分部积分再把dlnx变成1/xdx

求∫x^2根号xdx不定积分

∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)

定积分∫(2,1)1/x^2+xdx

如果有用及时采纳再问:问下为什么前面要加负号再答:加符号就对换了积分的上下限。再问:哦,谢谢

xdx+ydy=(x^2+y^2)dx 求解

原式=>ydy=(x^2+y^2-x)dx令x^2+y^2=t>=0则两边分别微分得:2xdx+2ydy=dt故原式=>dt-2xdx=2(t-x)dx=>dt/2t=dx所以lnt*1/2=x+C所

xdx/dy=--kx^2

1.等式两边除以x²并乘以dy得:(1/x)dx=-kdy两边积分得:lnx+C1=-ky∴y=-(1/k)lnx+C(C=1/C1)2.等式两边乘以dx得(2x+6x²)dx=y

急求∫tan^(-1)(1/x)dx 及 ∫sin^6xcos^2xdx详细解答,且要用到分部积分法的~

∫arctan(1/x)dx=∫(x)'arctan(1/x)dx=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx=xarctan(1/x)+∫1/(x+1/x)d

∫(6^x-2^x)3^xdx

再答:再答:第一个错了再问:不好意思,我把问题打错了,中间是除不是乘。您再看一眼,求指导!再答:

求两道不定积分,1,∫[(sinx+cosx)/(sinx-cosx)^1/3]dx2,∫(tan√1+^2)xdx/√

(1)原式=∫(sinx-cosx)^(-1/3)d(sinx-cosx),令u=sinx-cosx,剩下的自己写第二问题目好像码的都有问题

求定积分∫[0,π/4]xsec²x/(1+tan²x)²dx ,答案是π²/6

没错,1+tan²x=sec²x原式=∫(0~π/4)xsec²x/sec⁴xdx=∫(0~π/4)xcos²xdx=(1/2)∫(0~π/4)xd