tan根号X微分dy
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:02:31
y'=(x^x)'+(ln(arctan5x)'设f(x)=x^xlnf(x)=xlnx1/f(x)f'(x)=lnx+1f'(x)=f(x)(lnx+1)=x^x(lnx+1)ln(arctan5x
两边对x求导:y'=(1+y')[sec(x+y)]^2得y'=[sec(x+y)]^2/{1-[sec(x+y)]^2}=1/{[cos(x+y)]^2-1}因此dy=dx/{[cos(x+y)]^
主要是求2^x的倒数不会吧,可以设y=2^x,可以得到lny=xln2,两边求导,y'/y=ln2,所以y=ln2*2^x
对于一元函数,求解微分等价于求导,先求导:y'=dy/dx=(4x^3)'=12x^2.故dy=12x^2dx
y'=e^x(tanx+lnx)+e^x((secx)^2+1/x)=e^x(tanx+lnx+(secx)^2+1/x)dy=[e^x(tanx+lnx+(secx)^2+1/x)]dx
dy/dx=y'=3*cos(2x)*(2x)'+4e^x=6*cos(2x)+4e^xdy=y'*dx=(6*cos(2x)+4e^x)dx
这是隐函数的求导.求隐函数y=tan(x+y)的导数dy/dx把y看做是x的函数,两边对x求导,得y'=[sec(x+y)^2]×(1+y')解上式,得y'=[sec(x+y)^2]/[1-sec(x
dy=arcsinxdx+xdx/根号(1-x^2)+xdx/(根号1-x^2+e^2)
两边微分,dy=dx+1/y*dy所以dy=y/(y-1)*dx注结果里面可以有y,只有这种做法的.放心吧.再问:结果里面也可以有y?可以么,真的可以么。确定可以么。好吧,我相信你了,可以!yyyyy
dy/dx=√(1-x)+(1/2)(1-x)^(-1/2)*(-1)*x=√(1-x)-x/[2√(1-x)]=(2-3x)/[2√(1-x)]dy=(2-3x)/[2√(1-x)]dx.
y=e^(xlnx)+ln[arctan(5x)]dy/dx=e^(xlnx)[lnx+1]+1/arctan(5x)*[1+(5x)^2]^(-1)*5=x^x[lnx+1]+5/{arctan(5
由tan(A+B)=(tanA+tanB)/(1-tanA*tanB)得,tan(18-x)tan(12+x)+tan(18-x)tan(12+x)+[tan(18-x)+tan(12+x)]=tan
令x+y=u,则dx+dy=du,代入换掉y,得du/dx=tanu+1,分离变量,得cosudu/(sinu+1)=dx,两边同时积分,得ln(sinu+1)=x+lnc所以通解为ln[sin(x+
令x+y=u,则y=u-x.dy/dx=du/dx-1所以du/dx-1=u^2du/dx=u^2+1du/(u^2+1)=dx两边积分:arctanu=x+Cu=x+y=tan(x+C)y=tan(
∵ylnydx+(x-lny)dy=0∴ylnydx/dy+x=lny.(1)∴原方程与方程(1)同解用常数变易法求解方程(1)∵ylnydx/dy+x=0==>dx/x=-dy/(ylny)==>d
y=(1+1/√x)(1-√x)=[(1+√x)/√x](1-√x)=(1-x)/√x=1/√x-√xdy= -1/2*x^(-3/2)dx-1/2*x^(-1/2)dx=-dx/(2x√x
y=x^3+Cc是常数
设x/4=t则y=6tantt=x/4由复合函数求导公式:dy/dx=dy/dt*dt/dx=6sec^2(t)*(1/4)=3/2*sec^2(x/4)
y=x^2(cosx+√x),dy=[2x(cosx+√x)+x²(-sinx+1/2*1/√x)]dx=[2xcosx-x²sinx+2x√x+1/2*x√x]dx=[x(2co