(-3 2)的n次方级数是收敛还是发散的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:39:12
给你一个好证明!我们计算一下取平面上的点使得两个坐标互素的可能性.记为p,那么坐标最大公约数是2的可能性是4p.同理有9p.加起来,用全概率是1,知道1/p=n平方分之一的级数和.因为p不为0所以收敛
lim(n→∞)[1/(n-lnn)]/(1/n)=1又lim(n→∞)[1/(n-lnn)]=0u(n+1)-un
@满足不等式@>3/2因为根号下(2n+1)/根号下n的极限是根号2,也就是说他们是同阶的,原级数收敛等效于级数1/n^(@-1/2)收敛因为级数1/n^p当p>1时收敛,所以有@>3/2
不是收敛的因为若该数列收敛,则其任一子数列收敛,而事实不是这样,下面证明.-1的2k次方是该数列一子数列,其极限为1-1的2k+1次方也是该数列一子数列,其极限为-1两子数列极限不同,故不收敛
对(n+1)!用斯特林公式,得到级数绝对收敛
只需要求后一项与前一项的比值:为(n+1)^(n+1)*(n!)^2/[n^n*(n+1!)^2]=(n+1)^(n-1)/n^n=【(n+1)/n】^n*【1/(n+1)】lim【(n+1)/n】^
先判断是否绝对收敛,如下:
如果仅仅是1/(n+1)的话,那它是收敛的.因为当n趋于无穷大时,n+1也是趋于无穷大.那么它的倒数,也就是1/(n+1)就趋于0.
题目错了吧,应是“1/(n³+2n²)”吧1/(n³+2n²)1/(n³+2n²-3n)=1/[n(n+3)(n-1)]=(1/2)[(n+
设部分和数列为Sn则S[2k]=Σ-1/[(2k)(2k-1)]收敛S[2k-1]=S[2k]-(-1)^n/n收敛从而Sn的奇数子列和偶数子列收敛到同一个值所以Sn收敛即原级数收敛
发散,因为形如1/1+1/2+1/3+…+1/n+…的级数称为调和级数,它是p=1的p级数.调和级数是发散级数.在n趋于无穷时其部分和没有极限(或部分和为无穷大).
∑(-1)∧n这个级数是不收敛的,+1-1震荡显然不收敛再问:可是部分和有界啊,部分和要么是-1要么是1要么是0。。再答:这不叫有界啊再答:我刚看了一下,部分和有界判断的是正项级数,这是交错级数,不能
R=a(n-1)/an=n/(n-1)=1;当x=-1时,是交错级数,极限->0x=1是时,是调和级数,不收敛所以[-1,1)是收敛域
∑(∞n=2)an=∑(∞n=2)(-1^n)1/2^(n-1)∵∑(∞n=2)|an|=∑(∞n=2)1/2^(n-1)是公比为q=1/2∑(∞n=2)an绝对收敛,从而∑(∞n=2)an=∑(∞n
记通项为an,则lima(n+1)/an=e/a,因此a>e级数收敛,a
条件收敛收敛K>1发散再问:亲,你确定不?
应用比较审敛法,|cosnα|
a[n+1]/a[n]={1/2^[(n+1)/2]}/[1/2^(n/2)]=1/2^(1/2)
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/
分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm