vn收敛,vn平方也绝对收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:53:48
vn收敛,vn平方也绝对收敛
正项级数un,vn收敛 求证 级数(un+vn)^2收敛 高手来 !

若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un

为何绝对收敛?

stirling公式n!≈√(2πn)×n^n×e^(-n)显而易见是绝对收敛再问:这咋出来的?解释一下,如果是公式是说明一下再答:斯特林公式我忘咋证的了

若级数∑(n=1)un收敛,级数∑(n=1)vn发散,试证明级数∑(n=1)(un+vn)发散,求详细解答,谢谢

反证法:若级数(un+vn)收敛,则级数(vn)=级数(un+vn-un)=级数(un+vn)-级数(un)收敛.矛盾.

设正项级数∑Un收敛,数列{Vn}有界,证明级数∑UnVn绝对收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

已经知道 级数 ∑(un)^2 ∑(vn)^2 都收敛 证明 ∑(un+vn)^2 也收敛

(un+vn)^2=(un)^2+2unvn+(vn)^2《(un)^2+2|unvn|+(vn)^2《2[(un)^2+(vn)^2]级数∑(un)^2∑(vn)^2都收敛,所以级数2[(un)^2

若级数∑[n=1,∞]Vn收敛,则级数∑[n=1,∞]1/Vn发散 依据的原理是什么?

如级数vn收敛,则vn->0,而1/vn->无穷,所以,级数1/vn不可能收敛

级数绝对收敛

A的级数单项取绝对值之后变为1/n,是指数为1的调和级数发散(调和级数1/n^p,指数p需大于1才收敛)B的级数单项取绝对值之后变为1/lnn>1/n>0,由比较判别法,所以发散C的级数单项取绝对值之

绝对收敛什么意思

收敛就是当x取无穷时,函数数列趋向于一个定值.如果一个函数数列加绝对值以后还是收敛的,那就是绝对收敛,

设正项级数∑un和∑vn都收敛,证明:∑(un+vn)^2也收敛

由于当n趋于无穷时,un趋于0,vn趋于0,因此当n充分大时有0

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

已知级数∑Un收敛,若Vn/Un的极限是1,能否断定∑Vn收敛,为什么

对于正项级数来说是成立的,但对于任意项级数来说则不一定成立了再问:能举个例子吗?再答:比如说级数un=(-1)^n/√n显然交错级数收敛而vn=(-1)^n/√n+1/n易知limvn/un=1但vn

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

一个级数收敛的问题如果Sigma(Un)和Sigma(Vn)都发散,那么能否得出:Sigma(Min(Un,Vn))收敛

不能.考虑数列u(n)=1,v(n)=1,符合要求,但sigma(min(un,vn))显然发散.考虑数列u(n)为0,-1,0,-1,...,而数列v(n)为-1,0,-1,0,...,符合要求,但

已知∑Un收敛和∑Vn发散,判断∑(Un+Vn)的敛散性

∑(Un+Vn)肯定发散!证明:假如∑(Un+Vn)收敛,那么∑Vn=∑[(Un+Vn)-Un]=∑(Un+Vn)-∑Un,∑(Un+Vn)和∑Un都收敛,则它们的差∑Vn也收敛,这是和条件相抵触的,

条件收敛还是绝对收敛,

一般步骤是先判断是否绝对收敛,若否,则判断是否条件收敛.再答:再答:看到你对我的提问了。。。但是抱歉呀,我们多重、多元问题都没学,所以不能帮你了😳再问:那还是这类型的问题呢?再答:那也

设∑Un绝对收敛 ∑Vn收敛 证明∑UnVn绝对收敛

要证∑unvn绝对收敛就是要证级数∑|unvn|=∑|un||vn|收敛,由于∑vn收敛,故数列{vn}有界(因为limvn=0),所以有|vn|≤M.根据级数的柯西收敛原理,由∑un绝对收敛可知,对

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级