v是n维欧氏空间,A是v的线性变换,如果A既是正交变换,又是对称变换,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:04:55
先取V的一组基{e},这样就可以用具体的坐标来描述所有的东西假定m=dim(W1),k=dim(W2)=n-m,只需讨论m和k都非零的情况,余下的是平凡的取W1的一组基,这组基在{e}下的坐标表示是一
(1)到(2)a1,...,as线性无关Aa1,...,Aas线性相关则存在一组不全为0的数使得k1Aa1+...+ksAas=0所以A(k1a1+...+ksas)=0因为a1,...,as线性无关
设α,β∈W^⊥则任意γ∈W,(α,γ)=0=(β,γ)故(α+β,γ)=(α,γ)+(β,γ)=0+0=0故α+β⊥γ=>α+β∈W^⊥且(kα,γ)=k(α,γ)=0故kα⊥γ=>kα∈W^⊥故W
零变化属于U所以U分非空任意σ1σ2属于U那么对于任意x属于V有σ1(x)=k1xσ2(x)=k2x所以(σ1+σ2)(x)=(k1+k2)x所以(σ1+σ2)属于U任意σ1属于Um属于F对于任意x属
(1)两个子空间的和是直和只需要证明它们的交只有零向量.设Y∈ker(A)∩im(A),则AY=0且存在X使Y=AX.∵A²=A,∴Y=AX=A²X=A(AX)=AY=0.即ker
基本上忘光了,只能给你建议个思考方向.多项式矩阵和Jordan标准型
记E(ij)是第i行第j列元素为1,其余元素是0的矩阵,则E(ij)+E(ji),1
只需说明V对矩阵的加法及数乘运算封闭:两个上三角矩阵的和仍是上三角一个数乘上三角矩阵仍是上三角矩阵所以V是线性空间.其维数为n+(n-1)+...+1=(n+1)n/2再问:维数是怎么计算的呢为什么这
AB+BA=E左乘AAAB+ABA=A又AA=0则ABA=A同理BAB=BAa=ABAaAa为AB特征值1的特征向量Ba=0ABBaBa为AB特征值0的特征向量即对任意a,Aa不等于Ba则r(A)+r
不太会证,用矩阵的语言说明思路吧.矩阵T的等价标准型为D=【E0;00】,其中E是单位阵,阶数是T的秩,也就是变换T的像空间的维数.故存在可逆矩阵P,Q使得PTQ=D,令S=QP,则TST=P^(-1
你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
设V是数域P上的n维线性空间,W是V的一个s维子空间,那么,取定W的一个基:E1,E2,...,Es,将W的这个基扩充为V的一个基,记为,E1,E2,...,Es,Es+1,...,En现在我们构造一
双射与单位变换是两回事双射是一一对应单位变换是恒等变换
(证明存在向量a属于V但a不属于V1、V2中任意一个)证明:因为V1、V2互不包含且它们均V的真子空间从而必存在a1属于V1且a1不属于V2、a2属于V2且a2不属于V1现证明a1+a2不属于V1且a
你不是在写题解吧怎么这么多问题?A(α+β)=Aα+AβA(kα)=kAα
只需证V1∩V2对运算封闭.任给a,b∈V1∩V2则a,b∈V1,a,b∈V2因为v1,v2是V的子空间所以a+b,ka∈V1,a+b,ka∈V2,所以a+b,ka∈V1∩V2所以V1∩V2也是V的子