w=z²把z平面上的下列区域变为平面上的什么区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:19:16
w=z²把z平面上的下列区域变为平面上的什么区域
复数z是方程x^2-2x+5=0的一个虚根,且z在复平面上对应的点在第一象限,w=z^2+[(z-i)的共轭复数]

△=(-2)^2-4X5=-16,z=1+2i或z=1-2i.z在第一象限,z=1+2iz-i=1+i共轭复数1-i,故w=(1+4i-4)+1-i=-2+3i1.|w|=√(2^2+3^2)=√13

证明函数f(z)=z的共轭在z平面上处处连续?

复变函数f(z)=u(x,y)+iv(x,y)连续的充要条件是两个二元实函数u(x,y),v(x,y)都连续,本题中f(z)=x-iy,这里u(x,y)=x,v(x,y)=-y在xoy平面上处处连续,

若复数|w|=1,Z=x+yi(x,y属于R),且3w的共轭复数-Z=i,求复数Z在复平面上对应点的轨迹方程.

设:z=x+yi、w=a+bi,则:|w|=1,得:a²+b²=1----------------------------(1)又:3w的共轭复数=z+i,则:3(a-bi)=(x

已知|z|满足|z+1-2i|=3,复数w=4*z-i+1,求w在复数平面上对应的点p的轨迹的详解答案

|z+1-2i|=|z-(-1+2i)|=3就是说点Z到(-1,2)的距离为3即Z轨迹为以(-1,2)为圆心半径为3的圆设Z=(x1,y1)W=(x2,y2)可以求得Z轨迹方程根据w=4*z-i+1分

已知复数z满足|z-i|=1,有复数满足(w/w-2i)[(z-2i)/z]是一个实数,求复数w在复平面内的对应点轨迹.

条件不够啊,仅对z=2i来说,满足条件的w可以取除了2i以外所有的复数,所以如果说轨迹,只能是整个平面啦.轨迹不能是曲线啊!是不是丢掉什么条件了?

(1)曲面x^2+y^2+z^2=R^2 与x^2+y^2+z^2=2Rz所围成的立体,求它在Oxy平面上的投影区域

(1)∵x²+y²+z²=R²,x²+y²+z²=2Rz∴R²=2Rz==>z=R/2==>x²+y²

球面的三重积分设M由上半球面x^2+y^2+z^2=a^2与平面z=0围成,则x^2+y^2+z^2在区域M上的三重积分

∫∫∫(x^2+y^2+z^2)dxdydz=∫(0,2π)dθ∫(0,π/2)sinφdφ∫(0,a)r^4dr=(2π/5)a^5

设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy

第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2

函数w=1/2(z+1/z)将平面上的曲线|z|=2映射成w平面上的曲线方程为什么?

可以设z=x+iy,且满足条件(x^2+y^2)^1/2=2;设w=u+iv,将z带入w(z)的方程中,反解出z(w)的方程(u(x)和v(y))带入条件应该可以吧~木有试过,仅是一种思路······

w=f(z)在D上解析,D是关于实轴对称的区域,f(z的共轭)解析吗?f(z的共轭)的共轭解析吗?

第一个不定比如f(z)=z在全平面是解析的.但f(z共轭)=z共轭是不解析第二个是可以的.证明方法很多,可以直接用导数定义来验证.做不出来HI我.

高数二重积分题 求下列给定区域体积由XOY平面与z=2-x^2-y^2所围成的有界区域

二重积分再问:请问能否解释下你的解题思路我不是很会再答:第一个等号:二重积分计算体积;第二个等号:二重积分坐标变换;第三个等号:二重积分化累次积分;第四个等号:。。。

已知复数z满足||z-2i|-3|+|z-2i|-3=0,求z在复平面上对应的点组成图形的面积.

||z-2i|-3|+|z-2i|-3=0,变形为||z-2i|-3|=3-|z-2i|,∵|z-2i|是实数,∴|z-2i|≤3.上式表示复平面内点z到2i的距离小于等于3的圆面.因此此圆的面积为π

原题:计算三重积分,其中积分区域D是由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域.

先求旋转曲面的方程设旋转曲面上一点是(x0,y0),yoz面上的曲线为y^2=2z,则√(x0^2+y0^2)=y得旋转曲面的方程为:z=(x^2+y^2)/2z=(x^2+y^2)/2=5得Dxy:

已知复数z满足|z|=2,求复数w=(1+z)/z在复平面内的对应点的轨迹

设z=a+bi,由已知得a^2+b^2=4,w=(1+z)/z=(1+a+bi)/(a+bi)=(a^2+b^2+a)/(a^2+b^2)-bi/(a^2+b^2),所以x=(4+a)/4,y=-b/

在复平面上满足丨z+1丨²-丨z+i丨²=1的复数z对应的点z轨迹是_____

设z=x+yi丨z+1丨=√[(x+1)^2+y^2]丨z+i丨=√[x^2+(y+1)^2]丨z+1丨²-丨z+i丨²=x^2+2x+1+y^2-x^2-y^2-2y-1=12x

函数w=1/z,把z平面上x=1曲线映射成w平面上怎样的曲线(复数域)?

在复数域z平面上的表示z=x+i*y.映射成w平面上,w=1/z=(x-i*y)/(x^2+y^2).z平面上x=1曲线(y为任意实数)-->w平面上为(1-i*y)/(1^2+y^2)=(1-i*y