(1 2)^x-log1 2(2x-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 12:12:36
(1 2)^x-log1 2(2x-1)
设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1)时,f(x)=log12(1-x),则函数f(x)在(1,2

设x∈(-1,0),则-x∈(0,1),故f(-x)=log12(1+x).又f(x)是定义在R上以2为周期的偶函数,故f(x)=log12(1+x).再令1<x<2,则-1<x-2<0,∴f(x-2

已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=log12(x+1).

(1)f(0)=0(2分)f(-1)=f(1)=-(14分)(2)令x<0,则-x>0f(−x)=log12(−x+1)=f(x)∴x<0时,f(x)=log12(−x+1)(8分)∴f(x)=log

log12 (根号x+四次根号x)=1/2log9 x

log9x=log3(根号x)方程转化为log12(根号x+四次根号x)=log3(根号x)/2然后换元,换底即可

函数y=log12(x2-3x+2)的递增区间是(  )

由x2-3x+2>0得x<1或x>2,当x∈(-∞,1)时,f(x)=x2-3x+2单调递减,而0<12<1,由复合函数单调性可知y=log0.5(x2-3x+2)在(-∞,1)上是单调递增的,在(2

函数y=log12(3x-a)的定义域是(23,+∞),则a= ___ .

∵3x-a>0,∴x>a3.∴函数y=log12(3x-a)的定义域为(a3,+∞),∴a3=23,解得a=2故答案为:2.

函数y=log12(−x2+6x−8)的单调递减区间为(  )

由-x2+6x-8>0,得2<x<4,设函数y=log12(−x2+6x−8)=log12t,t=-x2+6x-8,则抛物线t=-x2+6x-8的对称轴方程是t=3.∴在抛物线t=-x2+6x-8上,

已知函数f(x)=log12(x2+2x+4),则f(-2)与f(-3)的大小关系是(  )

∵f(x)=log12(x2+2x+4),∴f(-2)=log12(4-4+4)=log124,f(-3)=log12(9-8+4)=log125,∵y=log12x是减函数,∴log124>log1

已知log12(3)=a,求log根号12(16)

log12(3)=a则log12(4)=log12(12/3)=log12(12)-log12(3)=1-alog根号12(16)=2log根号12(4)=4log12(4)=4(1-a)=4-4a

已知函数f(x)=log12(ax2+3x+a+1)

(1)当a=0时,由函数f(x)=log12(3x+1),可得3x+1>0,故函数的定义域为(-13,+∞).(2)∵对于x∈[1,2],不等式(12)f(x)−3x≥2恒成立,即ax2+3x+a+1

函数f(x)=log12

由x−1>02−x≥0,解得1<x≤2,∴函数f(x)的定义域为(1,2].又∵函数y1=log12(x-1)和y2=2−x在(1,2]上都是减函数,∴当x=2时,f(x)有最小值,f(2)=log1

设全集U=R,集合A={x|y=log12(x+3)(2−x)},B={x|ex−1≥1}.

要使y=log12(x+3)(2−x)有意义,需(x+3)(2-x)>0即(x+3)(x-2)<0,解得-3<x<2;由ex-1≥1,得x-1≥0,即x≥1.所以A={x|-3<x<2};B={x|x

函数f(x)=log12(x2−2x+5)的值域是(  )

令t=x2-2x+5,由x2-2x+5=(x-1)2+4≥4,知原函数的定义域为R,t≥4,则log12t≤log124=−2,所以原函数的值域为(-∞,-2].故答案为B.

log 12 (底)24(真)/log12(底)42(真) 化简

log12(底)24(真)/log12(底)42(真)=lg24/lg12÷lg42/lg12=lg24/lg42=log42(24)

函数y=log12(x2-5x+6)的单调减区间为(  )

令t=x2-5x+6=(x-2)(x-3)>0,可得x<2,或x>3,故函数y=log12(x2-5x+6)的定义域为(-∞,2)∪(3,+∞).本题即求函数t在定义域(-∞,2)∪(3,+∞)上的增

(x+12)(x-2)+(x+7)(x+8)-(x+5)(x-10),其中x=2

=x^2+10x-24+x^2+15x+56-x^2+5x+50=x^2+30x+82=4+60+82=146其实,不化简,直接代入=14*0+9*10+7*8=0+90+56=146也很简单

函数y=log12(x2−6x+17)的值域是(  )

∵t=x2-6x+17=(x-3)2+8≥8∴内层函数的值域变[8,+∞)  y=log12t在[8,+∞)是减函数, 故y≤log128=-3∴函数y=log12(x2

x*x+2x+x*x+10x+x*x+25+2x+x*x+1+1+16+x*x+4x*x+9-12x+16x*x+4-1

答:结论是无解的设1和4中间的正方形边长为x则左边中间的正方形边长为x+1左下角边长为x+1+x=2x+1所以:右下角正方形边长2x+1+x-4=3x-3所以:最大的正方形底部边长=2x+1+3x-3

33.不用计算器,证明:[log6]^2=/=log3*log12

第一题:后面log1=0,所以前者不等于后者第二题:后面log3*log12=log3*(log6+log2)=log3*log6+log3*log2.又因为log2=1,所以愿式=log3*log6

函数y=log12(x2-3x+2)的单调递减区间是(  )

∵函数y=log12(x2-3x+2),∴x2-3x+2>0,解得x<1,或x>2.∵抛物线t=x2-3x+2开口向上,对称轴方程为x=32,∴由复合函数的单调性的性质,知:函数y=log12(x2-