x y zds其中区域为x² y² z²=a²上z>=h的部分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:13:25
x y zds其中区域为x² y² z²=a²上z>=h的部分
高等数学二重积分求区域A的体积V,其中A由z=xy,x²+y²=a²,z=0围成.最好详细

体积V即以闭域D:x²+y²=a²为底,z=f(x,y)为曲顶的立体的体积∴V=∫∫(D)zdxdy其中D={(x,y)|x²+y²=a²}

计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域.

选用柱坐标系:0≤θ≤2Pi,0≤r≤2,r^2/2≤z≤2原式=∫dθ∫dr∫r^3dz=∫dθ∫r^3(2-r^2/2)dr=2Pi*(r^4/2-r^6/12)|r=2=16Pi/3再问:0≤r

计算曲面积分∫∫D x²yzds,其中区域D是球面x²+y²+z²=4在x≥0,

把球面参数化x=2sinucosvy=2sinusinvz=2cosu|J|=2^2*sinv=4sinv0再问:我这样理解对吗:因为这个是球面,所以只要对θ,φ求积分,r是常数?还有如果就在Oxyz

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.

因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住

计算二重积分∫∫(x^2+y^2+x)dxdy,其中D为区域x^2+y^2

首先计算∫∫xdxdy,由于被积函数是关于x的奇函数,而积分区域关于y轴对称,所以∫∫xdxdy=0,原积分=∫∫(x^2+y^2)dxdy,用极坐标计算,=∫dθ∫r^3dr,(r积分限0到1,θ积

计算三重积分∫∫∫zdv,其中Ω由z=-√(x^2+y^2)与z=-1围成的闭区域

{z=-√(x²+y²){z=-1-1=-√(x²+y²)x²+y²=1-->r=1切片法:∫∫∫zdV=∫(-1→0)zdz∫∫Dzdxd

计算三重积分,其中V为三个坐标面及平面 x+y+z=1 所围成的闭区域

原式=∫dz∫dy∫xdx=∫dz∫(1/2)(1-y-z)^2dy=(1/2)∫dz∫[(1-z)^2-2(1-z)y+y^2]dy=(1/6)∫(1-z)^3*dz=(1/6)∫(1-3z+3z^

计算三重积分∫∫∫zdxdydz,其中Ω由z=x^2+y^2与z=4围成的闭区域.

因为,曲面z=x^2+y^2在柱坐标下的方程为z=ρ^2这题如果是计算积分值的话,正解如下:因为z=常数的平面与Ω截得区域的面积为πz所以∫∫∫zdxdydz=∫(0~4)z(πz)dz=(1/3)π

计算三重积分∫∫∫Ωzdxdydz,其中Ω为三个坐标面及平面2/x+y+Z=1所围成的区域

Ω为三个坐标面及平面x/2+y+Z=1所围成的区域,原式=∫zdz∫dy∫dx=∫zdz∫2(1-y-z)dy=∫z[2(1-z)^-(1-z)^]dz=∫(z-2z^+z^3)dz=[(1/2)z^

计算∫∫∫(x+y+z^2)dV,其中Ω即区域范围是由曲面x^2+y^2-Z^2=1和平面z=H,z=-H(H>0)所围

积分域是单叶双曲面与两平面所围成.记为Q.它在第一卦限的部分记为Q1由于区域的对称性和函数的奇偶性,可知,∫∫∫(x+y)dV=0.即以下只要计算:∫∫∫z^2)dV.再由对称性:∫∫∫(x+y+z^

计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

原式=∫xdx∫dy∫dz=∫xdx∫(1-x-2y)dy=∫x[(1-x)²/4]dx=1/4∫(x-2x²+x³)dx=(1/2-2/3+1/4)/4=1/48.

计算三重积分∫∫∫ xydxdydz 其中Ω为三个坐标面及平面x+y+z=1所围成的闭区域

就用直角坐标计算再答:再问:∫(0,1)xdx∫(0,1-x)dy∫(0,1-x-y)dz我这么算怎么我算到1/8的?再答:不是被积函数是xy么再问:∫(0,1)xdx∫(0,1-x)ydy∫(0,1

计算三重积分∫∫∫zdxdydz,其中Ω由z=根号下x^2+y^2与z=4围成的闭区域.

原式=∫(0,4)dz∫∫(Dz)zdxdy=∫(0,4)zdz∫∫(Dz)dxdy=∫(0,4)z×πz^2dz=π∫(0,4)z^3dz=π×1/4×z^4|(0,4)=64π其中Dz:x^2+y

若x,y,z为某平原上的三个区域,人口密度x>y>z,则三个区域内级别相同的某商业职能部门的服务范围可能是()

应该是C吧再问:为什么再答:答案对么?因为人口密度小就是人口分散,说明面积大即范围大(不知道对不对)

计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域中过程的疑问

注意圆柱体的方程是x^2+y^2=a^2的形式.而本题的方程是x^2+y^2=2z,是个抛物面,看清楚了.图形的底是抛物面z=(x^2+y^2)/2=ρ^2/2,不是0喔,不然的话真是变为圆柱体了而顶

计算三重积分 ∫∫∫(x^2+y^2+z)dxdydz 其中D为曲面z=1-x^2-y^2与xOy平面所围成的区域.

要注意重积分(二重,三重,……)不能将积分区域代入被积函数而线积分,面积分则可以将积分曲线、曲面的方程代入被积函数以上是性质,请时刻牢记你题目的详细计算过程请见下图(看不到的话请Hi我)

∫∫∫=xdxdydz其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域

第一步先把这个拆成三个维度的.其中x的范围0-1,y的范围0-[(1-x)/2],z的范围0到(1-x-2y)写起来是∫xdx∫dy∫dz这个写起来还真不好写,然后全部整理成dx,就可以得到:(时间不