x,y相互独立,分别服从参数1,9的指数分布,P(x=3y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:01:46
X+Y服从参数为(a1+a2)的泊松分布,因为泊松分布具有可加性,证明见参考资料
X~π(a)Y~π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k
学过,不过有还给老师了,你自己再想以下吧,
提示:假设Z=min(X,Y)Pr[Z
若是没有记错的话,虽然卷积公式在连续型随机变量中提出来,但是有说过对于离散型随机变量也可使用,把那个积分改成求和就行了再问:能具体为我证明此题吗?谢谢再答:不知道公式怎么打,只能简要说一说:因为X、Y
请看看我在那里的答案吧,有问题请提出来
(1)由已知,f(x)=1,(0
密度函数f(x)=1,0
由于相互独立,EXY=EX*EY=1*2=2泊松分布的期望等于纳姆达=1二项分布的期望等于np=4*0.5=2
设X,Y的分布律分别为X01Y011-pp1-qq(1)X,Y独立,那么他们一定不相关(这是书上的结论,只要独立就一定不相关)(2)X,Y不相关,则COV(X,Y)=0,即E(XY)=E(X)E(Y)
P{X=Y}=P{(X=0)∩(Y=0)}+P{(X=1)∩(Y=1)}=0.4*0.4+0.6*0.6=0.52
对参数为入1,入2的两个指数分布X1,X2P(X1>X2)=入1/(入1+入2)1/(1+1)=1/2E(a),E(b)为例P(X>Y)∫(0~)∫(0~y)abe^(-ax-by)dxdy=∫(0~
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
这个问题其实挺简单的,你看一下课本吧,基础题目呦!
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
X.Y参数为1的柏松分布,则其母函数为Ψ(s)=e^(s-1)X.Y相互独立,X+Y母函数为Ψ(s,s)=Ψ(s)*Ψ(s)=e^(2(s-1))X+Y服从参数为2的泊松分布.再问:能再详细点吗。再答
π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m
由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i).设Z=X+Y,由于X,Y是相互独立,因此P(Z=
求出XY联合概率密度以后,在坐标轴XY上画出Y=-X-1的线,再根据X和Y的取值范围ie,即X>0,Y>0,把联合概率密度在围成的三角形内进行2重积分,即可算出最后答案,