x-y 1 2(siny)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:08:14
x-y 1 2(siny)=0
若cos(x+y)cosy+sin(x+y)siny=0,则cosx=

∵cos(x+y)cosy+sin(x+y)siny=0==>cos[(x+y)-y]=0(应用余弦差角公式cos(A-B)=cosAcosB+sinAsinB)==>cosx=0∴cosx=0.

求函数z=sinx+siny+sin(x+y)(0

z对x的偏导=cosx+cos(x+y)=0时,cosx=-cos(x+y)=cos(pi-x-y),所以x=pi-x-y.同理z对y的偏导=0时,有y=pi-x-y.所以x=y=pi/3.此时z=3

设siny-e^x+xy^2=0,求dy/dx

siny-e^x+xy^2=0cosy.y'-e^x+2xy.y'+y^2=0(cosy+2xy)y'=e^x-y^2y'=(e^x-y^2)/(cosy+2xy)

证明sin(x+y)sin(x-y)=sinx-siny

sin(x+y)sin(x-y)=-1/2(cos(x+y+x-y)—cos(x+y-x+y))=-1/2(cos2x—cos2y)=-1/2(1-2(sinx)^2-1+2(siny)^2)=(si

求导 e^x/(e^x +1)dx cosy /siny dy=ln siny

求导?是求积分吧∫e^x/(e^x+1)dx=∫1/(e^x+1)d(e^x+1)=ln|e^x+1|+C,C为常数∫cosy/sinydy=∫1/sinyd(siny)=ln|siny|+C,C为常

x-y+1/2siny=0所确定的隐函数的二阶导数

两边对x求两次导数:1-y'+1/2cosyy'=0;==>y'=1/(1-cosy/2)0-y''+1/2(y'(-siny)+cosyy'')=0==>y''=y'siny/(cosy-2)再将y

f(x)=∫[x,x^2]siny/ydy,则f'(0)=?

f(x)=∫[x,x^2]siny/ydyf'(x)=sinx^2/x^2*(x^2)'-sinx/x=2sinx^2/x-sinx/x这没办法直接代入啊,无意义再问:可是问题就这么问的啊?老师说用导

x-siny/x+tanx=0的导数dy/dx

隐函数的导数求法~

设siny+e的x次方-xy²=0,求dy/dx

dsiny+de^x-dxy²=0cosydy+e^xdx-y²dx-2xydy=0cosydy-2xydy=y²dx-e^xdxdy/dx=(y²-e^x)/

二重积分∫(0~1)dx∫(x~1)siny/y dy=

∫(0→1)dx∫(x→1)(siny)/ydy,交换积分次序=∫(0→1)(siny)/ydy∫(0→y)dx=∫(0→1)(siny)/y·ydy=∫(0→1)sinydy=-cosy:[0→1]

建筑图纸上B:X&Y12@130什么意思

你说的应该是筏板基础吧!如果是板的话,是指板底配筋纵横向受力筋均为直径12的钢筋,间距为130mm.再问:基础配筋再答:筏板基础配镜。字母B表示基础底板通长贯通底筋。T表示顶部通长贯通配筋。B:X&Y

求微分方程(siny-x)dy-dx=0的通解

变为dx/dy=-x+siny公式:对于y'=P(x)y+Q(x),通解为y=(∫{Q(x)e^[-∫P(x)dx]}dx+C)e^[∫P(x)dx]对于dx/dy=-x+siny,P(y)=-1,Q

siny+e^x-xy^2=0,求dy/dx

siny+e^x=xy^2,两边求微分,cosydy+e^xdx=d(xy^2)cosydy+e^xdx=y^2dx+2xydy整理,得(e^x-y^2)dx=(2xy-cosy)dydy/dx=(e

求隐函数siny+e的x次方-xy的2次方=0的导数

隐函数求导,就是先左右一起求微分,加个d,然后写出多少dx+多少dy=0,移项变成dy/dx=多少的形式就好了

求隐函数的偏导数siny+e^x-xy^2=0,求dy/dx

解两边求导y‘cosy+e^x-y^2-2xyy'=0即y’(cosy-2xy)=y^2-e^xy'=(y^2-e^x)/(cosy-2xy)或者F(x,y)=siny+e^x-xy^2=0Fx=e^

∫(0到1)dx∫(x到根号下x)siny/y dy=?

答案是1-sin(1)再问:嗯,是的,请问过程?再答:看网页,有图片的他那个是√x到x你那个是x到√x上下限交换就可以了再问:嗯,好的,谢谢啦。∫(-1→1)(x+1)根号下(1-x^2)dx=?请问

x*e^y+siny=0 求dy/dx

x*e^y+siny=0e^y+x*e^y*y'+cosy*y'=0=>y'=-e^y/[xe^y+cosy]再问:你好!我数学太烂。。能不能补充一下完整的答案。。。再答:x*e^y+siny=0两边

sinx+siny+sinz=0;cosx+cosy+cosz=0;求cos(x-y)

sinx+siny=-sinzcosx+cosy=-cosz平方相加sin²x+cos²x+sin²y+cos²y+2(cosx+cosy+sinxsiny)=

设siny+e^3x-2x^3y^2=0,求dy/dx

这是隐函数的求导cosy*y'+3e^3x-6x^2y^2-4x^3*y*y'=0dy/dx=y'=(6x^2y^2-3e^3x)/(cosy-4x^3y)