x1 ` x2 ` . . . ` xn 正整数解 n-1 k-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:29:46
x1 ` x2 ` . . . ` xn 正整数解 n-1 k-1
已知 x1 x2..xn均为整数求证:x2/√x1+x3/√x2+...xn/√xn-1+x1/√xn≥√x1+√x2+

x1x2..xn均为整数应是x1x2..xn均为正数吧,由均值不等式得:(x2/√x1)+√x1≥2√x2,(x3/√x2)+√x2≥2√x3,...(x1/√xn)+√xn≥2√x1,把上面n个不等

记实数x1,x2.xn中的最大数为max{x1,x2.xn}.最小数为min{x1,x2.xn}

必要不充分必要性:∵三角形ABC为等边三角形max{a/b,b/c,c/a}=min{a/b,b/c,c/a}=1∴I=1不充分充:存在不为等边三角形的三角形ABC,其中a=3,b=2,c=2使得l=

1.已知n个正整数x1,x2,x3,……,xn满足x1+x2+x3+…+xn=2008,求这n个数的乘积的最大值.

1、x1、x2、x3、…、xn中,不可能有大于或等于5的数,这是因为,5<2×3,6<3×3,…也不可能有三个或三个以上的2,因为三个2的积小于两个3的积因此n个数的最大积只可能是由668个3及2个2

已知n个正整数x1.x2.x3.x4.xn满足x1+x2+x3+x4+.xn=2008求这n个正整数乘积x1*x2*x3

因为三个2和两个3的和相同,但是3*3>2*2*2,所以尽量多上3,又2008可以拆成669个3和1,但是将一个3和一个1分成两个2会更好,所以最好结果为3的668次方乘以4

有一组正整数数据:X1,X2,...,Xn(X1

将答案做成了照片,点击就能看到http://hi.baidu.com/xiaozhaotaitai/album/item/ebfe6d3057ef8a88a8018ec0.html

设x1,x2,...,xn为任意实数,求证:x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

设x1,x2,x3.xn都是正数,求证:x1^2/x2+x2^2/x2+.+xn-1^2/xn+xn^2/x1>=x1+

最直接的就是用Cauchy不等式得:(x2+x3+...+xn+x1)(x1^2/x2+x2^2/x3+...+x(n-1)^2/xn+xn^2/x1)≥(x1+x2+...+x(n-1)+xn)^2

(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+

令x2+x3+...+xn-1=A(x1+x2+x3+...+xn-1)(x2+x3+x4+...+xn)-(x2+x3+x4+...+xn-1)(x1+x2+x3+...+xn)=(x1+A)(A+

x1/(1+x1^2)+x2/(1+x1^2+x2^2)+.+xn/(1+x1^2+x2^2+.+xn^2)

和高手讨论了一下,这办法不是我想的.(x1/(1+x1^2)+x2/(1+x1^2+x2^2)+...+xn/(1+x1^2+x2^2+...+xn^2))^2

x1,x2,.x9是正整数,且x1

由题意:x1,x2,…,x9均为正整数,得x1最小值为1,∵当x1,x2,…,x8取到最小值时,x9取到最大值=220-(1+2+3+…+8)=220-36=184,∴又∵1+2+3+…+9=45,2

已知n个正整数x1,x2,x3,……,xn满足x1+x2+x3+…+xn=2008,求这n个数的乘积的最大值.

这类问题有两种提法,一种是给定n,另一种是不限定n.你这里的n应该不是限定的.此时若分拆中出现4或更大的整数,都可以将其进一步拆为两个数,而使乘积变大(至少不会变小).所以取得乘积最大值的分拆(至少有

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

已知n个不同的数x1 x2 x3 ..xn是正整数1.2..任意一个排列试求|x1-1|+|x2-1|+...+|xn-

+|x2-1|+应为+|x2-2|+吧?如此则结论应为:当n为偶数时,和的最大值为n^2/2;当n为奇数时,和的最大值为(n^2-1)/2

(x1+x2+...+xn)^2

这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式

高中函数竞赛题已知正整数X1〈X2〈……〈Xn ,X1+X2+……+Xn=2003,n ≥2,求f(n)=n(X1+Xn

lz你的题怎么都怎么麻烦.若n=2则显然f(n)=2(x1+x2)=4006.是常数,所以也可以说f的最小值是4006.好,下面设n>=3设xi-i=ai(i=1,2,...,n).则ai都是非负整数

X2/X1(X1+X2)+X3/(X1+X2)(X1+X2+X3)+.Xn/(x1+x2+...Xn-1)(X1+X2.

Xn/(x1+x2+...Xn-1)(X1+X2...+Xn)=1/(x1+x2+...+xn-1)-1/(x1+x2+...+xn-1+xn)所以原式=1/x1-1/(x1+x2)+1/(x1+x2

用琴森不等式证明((x1+x2+...+xn)/n)^(x1+x2+...+xn)

两边取自然对数,并同除以n,只要证明(x1+x2+...+xn)/n*log[(x1+..+xn)/n]