X1,X2--Xn求矩估计量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:28:51
X1,X2--Xn求矩估计量
设总体X的概率密度为f(x),X1,X2……Xn是来自X的样本,求θ的矩估计量和最大似然估计量

L=f(x1)f(x2)...f(xn)=θ^n(1-x1)^(θ-1).(1-xn)^(θ-1)..lnL=nlnθ+(θ-1)[ln(1-x1)(1-x20...(1-xn)]dln/dθ=n/θ

概率论与数理统计 设X1,X2,……,Xn是取自总体X~B(m,p)的一个样本,其中m已知,求p的矩估计量

EX=mp=(x1+x2+...+xn)/n所以p的矩估计量为(x1+x2+...+xn)/(mn)而E[(x1+x2+...+xn)/(mn)]=(E(x1)+E(x2)+...+E(xn))/(m

设X1,X2...,Xn是取自总体X~E(X)的一个样本,求样本X1,X2...Xn的联合概率密度;求总体参数λ的矩估计

首先应该是e(入)fxi(xi)=入e^(-入xi)i∈{1,2,...n}把所有乘一起,设联合密度=pp(x1,x2,x3.,xn)=入^ne^(-入nx)注意下面这个E(X)是期望值E(X)=1/

在matlab中 向量X=(x1,x2,x3,...,xn) 怎样求 x1+x2+...+xn ?

用命令sum(X)再问:应该还差了冒号吧?sum(X:),但还是非常谢谢你!再答:不用加冒号啊再问:矩阵要加吧,我在matlab上运行要加啊,你对matlab应该很懂吧?再答:你不是说向量么。。。如果

设总体X服从参数为λ的泊松分布,其中λ为未知参数.X1,X2,...,Xn为来自该总体的一个样本,则参数λ的矩估计量为?

X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.

求行列式,第一行x1-m,x2,x3.xn;第二行x1,x2-m,x3.xn;第n行x1,x2,x3.xn-m

x1-mx2x3...xnx1x2-mx3...xn......x1x2x3...xn-mc1+c2+...+cn--所有列加到第1列∑x1-mx2x3...xn∑x1-mx2-mx3...xn...

设X1,X2,...Xn为来自正态总体X~N(μ,σ^2)的一个样本,μ已知,求σ^2的极大似然估计.

f(x1)=1/(2piσ^2)^0.5*exp[-(x1-μ)^2/2σ^2]...f(xn)=1/(2piσ^2)^0.5*exp[-(xn-μ)^2/2σ^2]L=f(x1)*f(x2)...f

总体X~B(n,p),X1,X2,…,Xn为其样本,求n及p的矩估计量

用样本算出均值与方差,另一方面,其均值与方差分别为np,np(1-p),即可算出

关于方差存在的总体X,X1、X2...Xn是取自总体的简单随机样本,EX^2的矩估计量的问题

矩估计并不要求无偏估计,矩估计的要求就是用样本矩来代替总体矩,σ²是二阶中心矩,S²不是中心矩,因此矩估计时一般选σ²,这是符合矩估计定义的.而且在一次实验中其实也很难确

设x1=1,x2=2,xn+2=根号下xn+1*xn 求limn→∞ xn

xn+2=根号下xn+1*xn你可以解释一下吗?再问:xn是个数列,xn+2=根号下(xn+1乘xn)

设x1,x2,...,xn为实数,证明:|x1+x2+...+xn|

x1,x2,...,xn为实数|x1+x2+...+xn|=|x1+(x2+.+xn)|

二项分布的矩估计给定样本x1 x2.xn求二项分布B(n,p)的n和p的矩估计量.....

试验次数n是已知的吧,根据EX=np=X~求出p*=X~/n(X~是样本的均值,p*是p的距法估计)再问:但是我觉得题目n是不知道的..是个英文题目再答:怎么可能不知道,n是实验次数啊,应该有统计的再

设随机变量X服从两点即X~B(1,P),X1,X2,...,Xn是来自X的一个样本求(1)P的矩估计(2)P的极大似然估

根据两点分布的数字特征可知EX=p,所以矩估计为其似然函数为显然有 它们均无偏.

(x1+x2+...+xn)^2

这个不等式恒成立用柯西不等式便可证明出(x1^2+x2^2+x3^2+.+xn^2)*(1+1+1+.+1)>=(x1+x2+x3+.+xn)^2仅当x1=x2=x3=.=xn,等号成立所以这个不等式

设排列x1,x2…Xn是奇排列,那么Xn,Xn-1,…X1的奇偶性如何?求详解,

分析:所谓排列的奇偶性,是指排列的逆序数为奇数还是为偶数.应用于线性代数的行列式.至于什么是“逆序数”,可以解释为调换原来次序的次数.例如“1,2,3,4,5”的逆序数为0(偶数),而“1,3,2,4

设X1,X2,.Xn是来自概率密度为 的总体样本,θ未知,求θ的矩估计和极大

矩估计E(x)=∫(-∞,+∞)f(x)xdx=θ/(1+θ)X'=Σxi/n=E(x)=θ/(1+θ)θ=x'/(1-x'),其中Σxi/n最大似然估计f(xi.θ)=θ^nx1^(θ-1)x2^(