X1-X2 √X3^2 X4^2服从什么分布
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:13:19
a=[1,1,1,1;2,3,-1,-1;3,2,1,1;3,6,-1,-1];>>b=[0;2;5;4];>>x=inv(a)*bx=0.61.3-2.2518e+162.2518e+16再问:我怎
显然a=5.另外,线性方程组的通解的表示方式不是唯一的特解与基础解系都不唯一只要将特解代入后无误,基础解系(是解,线性无关)含2个向量就可以
增广矩阵=1111512-14-22-3-1-5-2312110用初等行变换化为1000101002001030001-1方程组有唯一解:(1,2,3,-1)^T.
k,f为何值是方程组无解,解唯一,有无穷多解?在有解是,求出全部解.k≠-2时,方程组有唯一解.当k=-2时,r4+3r3100400
令x1=k(x2+x3+x4)1/3(x2+x3+x4)
该方程组的系数矩阵为11111111111123-1-2→01-3-4→01-3-4562101-3-40000所以,原方程组与方程组X1+X2+X3+X4=0,x2-3x3-4x4=0同解,令x3=
才零分,我打的累啊,给点分吧.增广矩阵12-11|12-312|2A=3-103|31-521|1然后第二行减去第一行2倍第三行减去第一行3倍第四行减去第一行1倍再第四行减去第二行,第三行减去第二行得
齐次线性方程组有非零解,则必有系数矩阵的行列式为0.(反之,若系数矩阵的行列式不为0,则它只有零解)|1111||01-12|=0|23a+24||351a+8|化简,得:|1111||01-12||
增广矩阵=121111243112-1-213-350024-26用初等行变换化为行最简形12002-10010-11000101000000一般解为:(-1,0,1,1,0)^T+k1(-2,1,0
令x1=k(x2+x3+x4)1/3(x2+x3+x4)
化简系数为最简矩阵,然后就可以写出基础解系.
我不知道Matlab报告形式应该什么样子.不过这样可以求解:>>A=[1-11-11;-111-11;2-2-11-1];%增广矩阵>>rref(A)%用初等行变换化行最简形ans=1-1000001
增广矩阵=21-1-11211-11421-22r2-r1,r3-2r121-1-110020000300r2*(1/2).r1+r2,r3-3r2210-110010000000通解为:(0,1,0
2X1+X2-X3+X4=1记为1式x1+2x2+x3-x4=2记为2式x1+x2+2x3+x4=3记为3式首先用3式-2式得到-x2+x3+2x4=1记为5式再用2*3式-1式得到x2+5x3+x4
增广矩阵=1-11-111-1-1101-1-22-1/2r2-r1,r3-r11-11-1100-22-100-33-3/2r2*(-1/2),r1-r2,r3+3r21-1001/2001-11/
112-3(第三行减112-3(第二行减000012-12第二行)112-3第一行)112-3行变换231-1---->231-1---->231-1---->00000000112-3行变换105-
系数行列式21-11200142-21化简后为4001秩为321-1-1200-1增广矩阵为21-1112001042-212化简后为40010秩为321-1-11200-10所以两个矩阵的秩都为3且