x1² 2x2² 3x3²-2x1x2 2x2x3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:28:06
两个方程组同解的充分必要条件是行向量组等价设方程组1,2的增广矩阵分别为A1,A2考虑分块矩阵H=(A1;A2)--上下放置则r(A1)=r(H)=r(A2)H=110-2-64-1-1-113-1-
原方程组即(2-λ)x1-x2-2x3=05x1-(3+λ)x2-3x3=0-x1+(2+λ)x3=0因为方程组有非零解,所以系数行列式等于0|A|=2-λ-1-25-3-λ-3-102+λ=(λ+1
增广矩阵=1111512-14-22-3-1-5-2312110用初等行变换化为1000101002001030001-1方程组有唯一解:(1,2,3,-1)^T.
您给的线性规划问题好像没有可行解哦.比如第二个约束可知:x1≥4,从第三个约束可知x2≥3所以x1+x2≥7和你的第一个约束矛盾.对偶问题在图片里.
k,f为何值是方程组无解,解唯一,有无穷多解?在有解是,求出全部解.k≠-2时,方程组有唯一解.当k=-2时,r4+3r3100400
增广矩阵=111312252237r2-r1,r3-2r1111301120011r1-r2,r2-r3100101010011所以方程组的解为(1,1,1).
该方程组的系数矩阵为11111111111123-1-2→01-3-4→01-3-4562101-3-40000所以,原方程组与方程组X1+X2+X3+X4=0,x2-3x3-4x4=0同解,令x3=
X1+2X2+3X3=4.(1)3X1+5X2+7X3=9.(2)2X1+3X2+4X3=5.(3),(1)+(2)-(3)*2,得:X2+2X3=3即:X2=3-2X3,代入(1):得:X1=X3-
齐次线性方程组有非零解,则必有系数矩阵的行列式为0.(反之,若系数矩阵的行列式不为0,则它只有零解)|1111||01-12|=0|23a+24||351a+8|化简,得:|1111||01-12||
增广矩阵=121111243112-1-213-350024-26用初等行变换化为行最简形12002-10010-11000101000000一般解为:(-1,0,1,1,0)^T+k1(-2,1,0
此题运用的是韦达定理的推广.在2次方程情形,韦达定理有一个结论是两根之和等于(-b/a),推广到3次方程有三根之和:x1+x2+x3=-b/a(其中a为最高次项系数,b为次高项系数,依此类推,初等代数
增广矩阵=11162-13923-22r2-2r1,r3-2r111160-31-301-4-10r1-r3,r2+3r31051600-11-3301-4-10r2*(-1/11),r1-5r2,r
由柯西不等式得:【x1^2/(x1+x2)+x2^2/(x2+x3)+x3^2/(x3+x1)】*【(x1+x2)+(x2+x3)+(x3+x1)】≥(x1+x2+x3)方所以x1^2/(x1+x2)
这里的自由未知量是x3取x3=0,代入等价方程组得一个特解:(3,-8,0,6)^T对应的齐次线性方程组的等价方程为x1=-x3;x2=2x3;x4=0即令等式右边的常数都为0得到的取x3=1得基础解
第一题X1=1X2=2X3=1再问:有没过程?
2X1+X2-X3+X4=1记为1式x1+2x2+x3-x4=2记为2式x1+x2+2x3+x4=3记为3式首先用3式-2式得到-x2+x3+2x4=1记为5式再用2*3式-1式得到x2+5x3+x4
将式子一两边同乘2变成:2X1+2X2+2X3=12,式子三与此式子相减后得:X3=1式子一两边乘3变成:3X1+3X2+3X3=18,此式子与式子二相减后得:X1=3,则X2=2再问:懂了,谢谢
x+2y+z=8(1)2x+3y+z=11(2)x+3y+3z=16(3)(3)-(1),得y+2z=82*(1)-(2),得y+z=5两个等式相减,z=3所以y=2,x=1方程组的解是x1=1,x2
112-3(第三行减112-3(第二行减000012-12第二行)112-3第一行)112-3行变换231-1---->231-1---->231-1---->00000000112-3行变换105-