x1大于0,xn 1=1 2(xn 1 xn),利用单调有界准则

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:32:17
x1大于0,xn 1=1 2(xn 1 xn),利用单调有界准则
数列{Xn}中,x1=a>0,xn+1=1/2(xn+a/xn).若次数列的极限存在,且大于0,求这个极限.

设极限为x则在xn+1=1/2(xn+a/xn)两边令n趋于无穷得x=(x+a/x)/2即得x^2=a又x>0,所以x=根号(a)

设x1>0,xn+1=3(1+xn)/1+xn,(n=1,2,.)证明极限存在

题目写了错吧,等号右边的3(1+xn)/1+xn不是约了吗

设X1>0,xn+1=3(1+xn) / 3+xn (n=1,2…)求lim xn.

记limxn=a,则limxn+1=limxn=a.对xn+1=3(1+xn)/3+xn两边取极限,得到a=3(1+a)/(3+a),解得a=正负根号3.由已知条件易知xn>0,所以limxn>=0.

证明n趋向无穷,极限存在,X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0),x1会不会小于根号a

证明:∵X1>0,Xn+1=(1/2)(Xn+a/Xn)(n=1,2...,a>0)==>Xn>0(n=1,2...,)(应用数学归纳法证明)==>Xn+1=(1/2)(Xn+a/Xn)≥(1/2)(

设0Xn=(Xn-1)*[1-(Xn-1)]*[1-(Xn-1)-(Xn-1)^2]=-----=X1*[1-X1]*[

收敛好证,极限难求啊!点击图片有收敛证明

已知x1≠1,x1>0,xn+1=xn(xn^2+3)/(3xn^2+1)(n∈N),求证:数列{xn}或者对任意正整数

由已知可得x(n+1)-1=(x(n)-1)^3/(3x(n)^2+1),所以当x(n)>1时可推出,x(n+1)>1;而当x(n)1;当x11,从而有x(n+1)/x(n)

x1=根号6,xn+1=根号下6+xn(n大于等于1) 用数学归纳法证根号6小于等于xn小于等于3,

很明显,x1=√6x2=√(6+√6)...故设xn的极限是A则xn+1=√(6+xn)x(n+1)=xn=A>0即A=√(6+A)A^2-A-6=0(A+2)(A-3)=0A-3=0A=3因此lim

数列{an}满足X1=a>0,Xn+1=1/2(Xn+a/Xn),n∈N*,若数列{Xn}的极限存在且大于0,求Xn(n

X1=a>0,Xn+1=1/2(Xn+a/Xn)所以Xn>0由于极限存在且大于0设Xn的极限是A也就是n趋于无穷大Xn=A所以n趋于无穷大时X(n+1)也是A于是A=1/2(A+a/A)解出A=√a极

如图 ,P1 (X1,Y1) P2(X2,Y2) .Pn (Xn,Yn)在函数Y=9/x (X大于0)的图像上,三角形O

作P1⊥X轴于D1,P2⊥X轴于D2……Pn⊥X轴于Dn,则有x1=y1,x2=y2,……xn=yn;x1=y1,x1*y1=9==>x1=y1=3==>OA1=2x1=6==>(A2D2+OA1)*

n维向量空间的子空间W={(X1,X2,.Xn):一个方程组X1+X2+.Xn=0和X2+.Xn=0}的维数是n-2!

方程组X1+X2+.Xn=0X2+.Xn=0的系数矩阵的秩为2故其基础解系含n-2个向量它们构成W的基故W的维数是n-2

证明极限存在X1>0,Xn+1=1/2(Xn+a/Xn)(n=1,2...,a>0)

首先,Xn+1=1/2(Xn+a/Xn)>=1/2*2√a=√a则无论X1>0的值如何(所以可假定X1>√a),Xn(n=2,3...)的值都大于或等于√a如果X1=√a可以确定,Xn为常数列,其极限

A是n阶矩阵,且f(x1,x2,.xn)=X'AX是正定的,问|A|是否大于0?

补充的问题是对的,A不一定正定,因为你没给出A是实对称阵的前提.譬如现在有一个矩阵,aii>0,aij=-aji,满足任意非零向量X使得f(x1,x2,.xn)=X'AX恒大于0

设有整数x1,x2,……xn,使x1+x2+……+xn=0,x1x2……xn=n,证明:4|n

首先,x1,x2,……xn不可能全不为1或-1,否则|x1x2……xn|>|x1|+|x2|+……+|xn|>n若n为奇数,则x1,x2,……xn除了有限个绝对值不为1的数外,其余都为1和-1而这些绝

数列xn由下列条件确定:x1=a>0,x(n+1)=1/2(xn+2/xn),n∈N.若数列xn的极限存在且大于0,求l

其实有个很简单的方法.因为x(n+1)=1/2(xn+2/xn)且数列极限存在,所以会有limx(n+1)=lim[1/2(xn+2/xn)]即limx(n+1)=1/2(limxn+2/limxn)

数列{Xn}中,X1>0,a>0,Xn+1=1/2(Xn+a/Xn).

强烈要求加分.这个就是差分方程,关于他的解都有定论Xn+1-根号a=1/2(根号Xn-根号(a/Xn))^2Xn+1+根号a=1/2(根号Xn+根号(a/Xn))^2(Xn+1-根号a)/(Xn+1+