x1服从标准正态分布,x2服从标准正态分布,x1 x2服从?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:09:47
matlab只能通过仿真来模拟,而不是准确的概率密度函数.具体程序是下边这样的.x1=2+randn([100000,1]);x2=4+randn([100000,1]);Y=714+807*(x1)
随机变量X的概率密度函数为:{[1/sqrt(2pi)δ]}*exp[-(x-u)^2/(2*δ^2)]被称之为标准正态分布.
为了方便令F(X1)=ф(X(1)))F(X1)=1-(1-F(X1))^nf(x1)=n*((1-F(x1))^(n-1))*F'(x1)E=ф(X(1)))*f(x1)从负无穷到正无穷的积分积分符
首先考虑两个的情况,如果证明了y=ax1+bx2是两个正态的和,也是正态的,接下来就直接用归纳法证毕,因为比如3个和的情况就是ax1+bx2+cx3=y+cx3也是两个正态的和,因此正态.n就能退化到
Cov(X1+X2,X1-X2)=Var(X1)-Cov(X1,X2)+Cov(X1,X2)-Var(X2)=Var(X1)-Var(X2)=0所以X1+X2和X1-X2不相关.如果(X1,X2)的联
x3^2+x4^2服从卡方(2)(x1-x2)服从N(0,2)根据t分布定义[(x1-x2)/√2]/√(x3^2+x4^2)/2=(x1-x2)/√(x3^2+x4^2)服从t(2)
Y=(X-μ)/σ,则Y服从标准正态分布.
1.独立的正态分布的联合分布也服从正态分布.2.没关系.3.去掉独立后,结论不成立.4.由分布密度来判断是否是二维正态分布.
依题意,X1、X2均服从标准正态分布(X1+X2)/√2服从N(0,1)相当于只有1个标准正态分布的平方,所以自由度为1的卡方分布
不太懂联合概率分布的意思可能和我们教材不一样吧我只会求X2的方差为4.不好意思.没有期望怎么能求出F(X)的概率分布呢?
D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,
U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.
服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是
打开数据序列,在series窗口中依次点击view-descriptivestatistics&tests-histogramandstats出现的窗口右侧最下面有Jarque-Bera统计量和其对应
先看一下定义,如下,P{X1=0,X2=0}()应该是正泰的概率密度的函数联合概率和独立两个事件A和B的联合概率定义在相同的样本空间中(结果落在A和B中的概率)P(AB)=P(C);其中:事件C=A∩
%%MonteCarlo方法Len=1e6;x1=2+rand(1,Len)*6;x2=2+randn(1,Len);x3=exprnd(3,1,Len);x=x1+x2.^2+x3.^2;count
X1X2iidindependentandidenticaldistributionY=2+3X1-4X2E(Y)=2VAR(Y)=9+16=25N(2,25)所以fy(Y)=1/sqrt(2pi)*
X1和X2是独立的吧?D(2X1+3X2)=4D(X1)+9D(X2)=4x1+9x1=13再问:我也是一直在想是不是独立的。现在的观点也是两者相互独立。谢
1、x1、x2是否相互独立,与你得出的Δ=X1-X2无关.只与你使用环境有关,与你建模时假设有关,也就是实际情况.2、如果相互独立,标准正态分布的函数也是标正分布,期望与方差根据公式可求的.如果不独立