x3(x1 x2) 1 x32x4的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:04:10
x3(x1 x2) 1 x32x4的取值范围
关于一道简单的化二次型为标准型的题,已知f(x1,x2,x3)=2x1^2+2x2^2+2x3^2+2x1x2-2x2x

你的变换矩阵为11001-1101行列式等于0所以这不是可逆变换配方法应该是首先把含x1的项一次处理光x1只能出现在第1项中再问:因为是不可逆变换,所以X不等于QY,所以我那样的做法不对,是这个意思吗

设方程3x的三次方-2x的平方+3x-1=0的根为x1,x2,x3,求x1x2+x2x3+x1x3的值

因为x1,x2,x3是原方程的三个根,所以,原方程可写作:(x-x1)(x-x2)(x-x3)=0解开得:x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3=0而原等

1x2=1/3(1x2x3=0x1x2 ) 2x3=1/3(2x3x4-1x2x3) 3x4=1/3(3x4x5- 2x

nx(n+1)=1/3[n(n+1)(n+2)-(n-1)n(n+1)]1x2+2x3+3x4+...+nx(n+1)=1/3[1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+

1x2=1|3(1x2x3-0x1x2) 2x3=1|3(2x3x4-1x2x3) 3x4=1|3(3x4x5-2x3x

3*(1x2+2x3+3x4+...+99x100)=3*1/3*(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+99x100x101-98x99x100)=99x100x1

1x2=三分之一{1x2x3-0x1x2};2x3-三分之一{2x3x4-1x2x3}:3x4-三分之一{3x4x5-2

1X2+2X3+3X4+、、、、、、+nX(n+1)=(1/3)(1*2*3-0*1*2)+(1/3)(2*3*4-1*2*3)+(1/3)(3*4*5-2*3*4)+.+(1/3)[n*(n+1)(

1、 已知方程x2+bx+c=0及x2+cx+b=0分别有两个正整数根x1,x2和x3,x4,且x1x2>0,x3x4>

根据韦达定理x1x2=c>0x3x4=b>0x1+x2=-bx3+x4=-c因为两个方程都有两个正整数根x1,x2,x3,x4都是正整数因此c和b也是正整数c-b=x1x2-x1-x2=(x1-1)(

f(x1,x2,x3)=x1^2-2x2^2-2x3^2-4x1x2+4x1x3+8x2x3化为标准型.并写出所做的非退

f=(x1-2x2+2x3)^2-6x2^2-6x3^2+16x2x3=(x1-2x2+2x3)^2-6(x2-4/3x3)^2+(14/3)x3^2令(y1,y2,y3)'=(x1-2x2+2x3,

已知二次型f=x1^2+x3^2+2x1x2-2x2x3 (1)写出此二次型对应的矩阵A

(1)A=11010-10-11(2)|A-λE|=1-λ101-λ-10-11-λc1+c31-λ100-λ-11-λ-11-λr3-r11-λ100-λ-10-21-λ=(1-λ)[-λ(1-λ)

(x1-x2)+(x2-x1)/(x1x2)=(x1-x2)(x1x2-1)/x1x2 这一步怎么推出来的,

通分分子=x1x2(x1-x2)-(x1-x2)=(x1-x2)(x1x2-1)

二次型正定的问题.F(x1,x2,x3,..,xn)=x1^2 + 2x1x2 + x2^2 + x3^2 +.+ xn

根据就是正定二次型的定义根据正定二次型的定义,对于任意不全为0的x1,x2……xn,有F(X1,X2,……xn)>0而题目中,很明显存在一个非0的x=[1,-1,0,0,0,...0],使F(x1,x

若方程(x-1)(x2+8x-3)=0的三根分别为x1,x2,x3,则x1x2+x2x3+x3x1的值是(  )

∵方程(x-1)(x2+8x-3)=0的三根分别为x1,x2,x3,∴x1=1,x3+x2=-8,x3•x2=-3,则x1x2+x2x3+x3x1=x1(x2+x3)+x2x3=-3-8=-11.故选

[线代]二次型的矩阵(x1^2)+2(x2^2)+3(x3^2)+4(x1x2)-4(x2x3)=x1(x1+4x2+0

应该是(x1^2)+2(x2^2)+3(x3^2)+4(x1x2)-4(x2x3)=(x1^2)+2(x2^2)+3(x3^2)+2(x1x2)-2(x2x3)+2(x2x1)-2(x3x2)所以A=

已知二次型f(x1 x2 x3)=2x1^2+2x2^+2x3^2+2x1x2,求矩阵A的特征值?

210120002|A-λE|=2-λ1012-λ0002-λ=(2-λ)[(2-λ)^2-1]=(2-λ)(3-λ)(1-λ)所以A的特征值为1,2,3.

化二次型f=x1^2+3x2^2+5x3^2+2x1x2-4x1x3为标准型,并求所用的变换矩阵

f=(x1+x2-2x3)^2+2x2^2+x3^2+4x2x3=(x1+x2-2x3)^2+2(x2+x3)^2-x3^2=y1^2+2y2^2-y3^2.Y=CX,其中变换矩阵C=100110-2

一道找规律的题!观察下面三个特殊等式:1x2=1/3(1x2x3-0x1x2); 2x3=1/3(2x3x4-1x2x3

(1)1x2+2x3+…+99x100+100x101==1/3x100x101x102=343400(2)1x2+2x3+3x4+…+n(n+1)(n为正整数)=1/3n(n+1)(n+2)(3)1

设实数x1,x2,x3,x4,x5均不小于1,且x1·x2·x3·x4·x5=729,则max{x1x2,x2x3,x3

x1x2+x3x4≥2√(729/x5)即取定一个x5后,x1x2,x3x4不会都小于√(729/x5)x2x3+x4x5≥2√(792/x1)√(729/x5)+√(792/x1)≥2√(729*7

观察下列各式:1X2=1/3(1x2x3-0x1x2) 2x3=1/3(2x3x4-1x2x3) 3x4=1/3(3x4

3*(1x2+2x3+3x4+...+99x100)=3*1/3*(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+99x100x101-98x99x100)=99x100x1

设函数f(x)=6x3+3(a+2)x2+2ax. 若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值

f(x)=6x³+3(a+2)x²+2axf'(x)=18x²+6(a+2)x+2af'(x1)=f'(x2)=0,x1和x2都是f'(x)的根根据韦达定理,两根之积x1

若奇函数f(x)=x 3+(b_1)+cx的三个零点x1,x2,x3满足x1x2+x2x3+x1x3=_2012,则b+

∵f(x)是奇函数∴f(-x)=-f(x)∴对任意的x,有-x³+(b-1)*(-x)²+c*(-x)=-x³-(b-1)x²-cx化简,得2(b-1)x