x3(x1 x2) 1 x32x4的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:04:10
你的变换矩阵为11001-1101行列式等于0所以这不是可逆变换配方法应该是首先把含x1的项一次处理光x1只能出现在第1项中再问:因为是不可逆变换,所以X不等于QY,所以我那样的做法不对,是这个意思吗
因为x1,x2,x3是原方程的三个根,所以,原方程可写作:(x-x1)(x-x2)(x-x3)=0解开得:x^3-(x1+x2+x3)x^2+(x1x2+x2x3+x1x3)x-x1x2x3=0而原等
nx(n+1)=1/3[n(n+1)(n+2)-(n-1)n(n+1)]1x2+2x3+3x4+...+nx(n+1)=1/3[1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+
3*(1x2+2x3+3x4+...+99x100)=3*1/3*(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+99x100x101-98x99x100)=99x100x1
1X2+2X3+3X4+、、、、、、+nX(n+1)=(1/3)(1*2*3-0*1*2)+(1/3)(2*3*4-1*2*3)+(1/3)(3*4*5-2*3*4)+.+(1/3)[n*(n+1)(
根据韦达定理x1x2=c>0x3x4=b>0x1+x2=-bx3+x4=-c因为两个方程都有两个正整数根x1,x2,x3,x4都是正整数因此c和b也是正整数c-b=x1x2-x1-x2=(x1-1)(
f=(x1-2x2+2x3)^2-6x2^2-6x3^2+16x2x3=(x1-2x2+2x3)^2-6(x2-4/3x3)^2+(14/3)x3^2令(y1,y2,y3)'=(x1-2x2+2x3,
(1)A=11010-10-11(2)|A-λE|=1-λ101-λ-10-11-λc1+c31-λ100-λ-11-λ-11-λr3-r11-λ100-λ-10-21-λ=(1-λ)[-λ(1-λ)
通分分子=x1x2(x1-x2)-(x1-x2)=(x1-x2)(x1x2-1)
根据就是正定二次型的定义根据正定二次型的定义,对于任意不全为0的x1,x2……xn,有F(X1,X2,……xn)>0而题目中,很明显存在一个非0的x=[1,-1,0,0,0,...0],使F(x1,x
∵方程(x-1)(x2+8x-3)=0的三根分别为x1,x2,x3,∴x1=1,x3+x2=-8,x3•x2=-3,则x1x2+x2x3+x3x1=x1(x2+x3)+x2x3=-3-8=-11.故选
应该是(x1^2)+2(x2^2)+3(x3^2)+4(x1x2)-4(x2x3)=(x1^2)+2(x2^2)+3(x3^2)+2(x1x2)-2(x2x3)+2(x2x1)-2(x3x2)所以A=
210120002|A-λE|=2-λ1012-λ0002-λ=(2-λ)[(2-λ)^2-1]=(2-λ)(3-λ)(1-λ)所以A的特征值为1,2,3.
f=(x1+x2-2x3)^2+2x2^2+x3^2+4x2x3=(x1+x2-2x3)^2+2(x2+x3)^2-x3^2=y1^2+2y2^2-y3^2.Y=CX,其中变换矩阵C=100110-2
(1)1x2+2x3+…+99x100+100x101==1/3x100x101x102=343400(2)1x2+2x3+3x4+…+n(n+1)(n为正整数)=1/3n(n+1)(n+2)(3)1
x1x2+x3x4≥2√(729/x5)即取定一个x5后,x1x2,x3x4不会都小于√(729/x5)x2x3+x4x5≥2√(792/x1)√(729/x5)+√(792/x1)≥2√(729*7
3*(1x2+2x3+3x4+...+99x100)=3*1/3*(1x2x3-0x1x2+2x3x4-1x2x3+3x4x5-2x3x4+99x100x101-98x99x100)=99x100x1
f(x)=6x³+3(a+2)x²+2axf'(x)=18x²+6(a+2)x+2af'(x1)=f'(x2)=0,x1和x2都是f'(x)的根根据韦达定理,两根之积x1
∵f(x)是奇函数∴f(-x)=-f(x)∴对任意的x,有-x³+(b-1)*(-x)²+c*(-x)=-x³-(b-1)x²-cx化简,得2(b-1)x