x=x^y求导, 则dz|(2,1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:32:51
∂z/∂x=2xy∂z/∂u=x²所以dz=2xydx+x²dy
y'=2-x的-2次方×8y'=2-8x^(-2)y′=2-8/x²
dz=2x+y就是对z求x的导数吧
z'x=2e^(2x+y)z'y=e^(2x+y)所以dz=2e^(2x+y)dx+e^(2x+y)dy
两边同时微分:dx+2ydy+2zdz=2dzdz=1/(2-2z)dx+2y/(2-2z)dydz/dx=1/(2-2z)dz/dy=2y/(2-2z)注意:这是全微分求偏导数
令u=x^2+y^3dz/dx=dz/duXdu/dx=e^uX2x=2xe^(x^2+y^3)dz/dy=dz/duXdu/dy=e^uX3y=3ye^(x^2+y^3)考查公式(e^x)'=e^x
Iny=(-x)In3+2Inx(Iny)‘=-In3+2/xy'/y=-In3+2/xy'=(-In3+2/x)yy'=(-In3+2/x)[3^(-x)·(x²)]=(-x²I
∂z/∂x=2x/(1+x^2+y^2)∂z/∂y=2y/(1+x^2+y^2)dz=∂z/∂xdx+∂z/W
两边取对数lny=x^2*ln|x|两边求导y'/y=2xln|x|+x^2/xy'=y(2xln|x|+x)=x^(x^2)(2xln|x|+x)
dz=Z'xdx+Z'ydy=2xcos(x^2+y^2)dx+2ycos(x^2+y^2)dy
再问:啊不好意思搞错了。。是z=e^(x^2+y^2),求dz,谢谢你帮我解答一下吧。。再答:
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
积法则+链式y'=x'[arcsin(x/2)]+x[arcsin(x/2)]'=arcsin(x/2)+x*[1/根号(1-(x/2)^2)]*(x/2)'=arcsin(x/2)+x/[2*根号(
=2x
dZ=[d(1/(x^2+y^2))/dx]dx+[d(1/(x^2+y^2))/dy]dy=-[2x/(x^2+y^2)^2dx+2y/(x^2+y^2)^2dy]
u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy
dz=dx/(x+y)+dy/(x+y)
z=(2y+7)^2*ln(x^3+2)dz/dx=3x^2*(2y+7)^2/(x^3+2)dz/dy=2*(2y+7)*ln(x^3+2)