xarcsinx在0到1上的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:54:39
令t=π-x,则∫(0~π)xsinx/[1+(cosx)^2]dx=∫(π~0)(π-t)sint/[1+(cost)^2](-dt)=∫(0~π)(π-t)sint/[1+(cost)^2]dt=
答:先求不定积分:∫1/((x-1)^(2/3))dx=3(x-1)^(1/3)+C所以不定积分=3(x-1)^(1/3)|(0到3)=3*2^(1/3)-3*(-1)=3*(1+2^(1/3))
先计算M=积分(从0到pi/2)lnsintdt因为sint=2sintcost,lnsint=ln2+lnsin(t/2)+lncos(t/2)故M=pi*ln2/2+积分(从0到pi/2)lnsi
dy=arcsinxdx+xdx/根号(1-x^2)+xdx/(根号1-x^2+e^2)
把e的x次方幻元为t就很好求了
在x∈[0,2π]内解sin(x+1)=0解得x=π-1,x=2π-1在x∈[0,π-1]和[2π-1,2π],sin(x+1)>0在x∈[π-1,2π-1],sin(x+1)∴∫(0→2π)|sin
x=(tant)/2,dx=(1/2)(sect)^2dt,I=(1/2)∫(sect)^3dt∫sect^3dt=sect*tant-∫set*(tant)^2dt=sect*tant-∫(sect
设t=arcosx,则x=cost,0=cosπ/2,1/2=cosπ/3
1÷0.16=6.2540×6.25=24(kg)答:红红到月球上重24千克.
当x趋近于0时,ln(1+2xarcsinx)/tan^2x极限=lim(x->0)2xarcsinx/(x^2)=lim(x->0)2x^2/(x^2)=2
这个形式的定积分是不可以求的但是∫(0,sinx)√(1+t^2)dt这个式子的导数是可以求的原题是不是求d[∫(0,sinx)√(1+t^2)dt]/dx呢?再问:���ǵ�再答:��������ɣ
见图,前一步用分步积分,后一步用一个公式.
请点击图片浏览
如无疑问,再问:神,无话可说
唉.你们同学真是占领了整个百度知道.问了快20遍了.持续3天.可是这个题目你可以放弃了.初等函数不能表达原函数.
在百度里不好打公式,我说下方法好了,1和tanX是可以分开的(1是常数),不定积分就得x-Ln|cosx|,你再定积分就好了,别说不会定积分,那我也没办法了.键议你看看基本公式,怀疑你有些公式不记得了