xdln√(x^2 H^2)等于什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:42:26
xdln√(x^2 H^2)等于什么
设函数f(x)在点x0处可导,且f'(x0)=2,则lim(h→0)[f(x0-h/2)-f(x0)]/h等于多少

lim(h→0)[f(x0-h/2)-f(x0)]/h=lim(h→0)[f(x0-h/2)-f(x0)]/(-h/2)*(-1/2)=f'(x0)*(-1/2)=2*(-1/2)=-1

已知函数f(x)在点x=x0处可导,则h趋于0,lim f[(x0)-f(x0-2h)]/h等于多少.

lim[f(x0)-f(x0-2h)]/h=lim[f(x0)-f(x0-h)+f(x0-h)-f(x0-2h)]/h=lim[f(x0)-f(x0-h)]/h+lim[f(x0-h)-f(x0-h-

2,十六进制数15-A等于( )H.

十六进制数15-A等于(BH).再问:39����Ϣ���ٹ�·��ָ()��A��װ����ͨ����ʩ�ĸ��ٹ�·B����������ϵͳC������ר��ͨ��D�������Ϣ����ʩ

关于微分的假设f( x )的二阶导数存在证明f(x)的二阶导数等于x趋近于0时候[f(x+h)-f(x-h)-2f(x)

应该是h趋于0吧,而且f(x+h),f(x-h)之间应该是加号f(x)的二阶导数存在,所以他在定义域上二阶可导对lim[f(x+h)+f(x-h)-2f(x)]/h^2使用洛必达法则,对h求导=[f'

设函数f(x)在x=0处连续,且h趋于0时,f(h^2)/h^2的极限等于1.

首先,可以很快得出f(0)=0因为h趋于0时,f(h^2)/h^2的极限等于1,即极限存在.而分母趋于0,所以分子又函数f(x)在x=0处连续,所以令x=h^2,由于x=h^2>0,所以h→0时

已知函数f(x)在点 x0处可导,且f ′(x0)=3,则lim f(x0+2h)-f(x0)/h等于

limf(x0+2h)-f(x0)/h=lim[f(x0+2h)-f(x0)/2h]*2=2limf(x0+2h)-f(x0)/2h=2f′(x0)=6

y=a(x-h)^2+k 中a,h,

a的正负决定抛物线的开口方向大小决定开口大小.h是对称轴的横坐标也是二次函数的顶点横坐标k是函数图象顶点的纵坐标

h趋于0时,(f(x0+2h)-f (x0+h))h是否等于f(x+h)的导数

(f(x0+2h)-f(x0+h))/h用洛必达法则对h求导,即得=(2f'(x0)-f'(x0))/1=f'(x0)

高度为h的二叉树的叶子结点数,是等于2^h,还是小于等于2^h?

准确地说,高度为h的二叉树的叶子结点数,大于等于1,且小于等于2^(h-1)

设f(x)在x=x.处有二阶导数,证〖f(x.+h)-2f(x.)+f(x.-h)〗/h^2在h→0时的极限等于f(x.

过程是这样:={[f(x+h)-f(x)]/h-[f(x)-f(x-h)]/h}/h=[f'(x)-f'(x-h)]/h=f''(x-h)=f''(x),h->0

(2+h+x)/2(2-h-x) +k+(2+h-x)/2(2-h+x)+k=1

由导数的定义可知f(x)在x=2处可导,且f'(2)=1,就是说lim(f(2+h)-f(2))/h=1于是,lim[f(2+h)-f(2-h)]/h=lim[f(2+h)-f(2)+f(2)-f(2

设f(x)在x=2处可导,且f'(2)=1,则lim h→0 [ f(2+h)-f(2-h)]/h等于多少,

由导数的定义可知f(x)在x=2处可导,且f'(2)=1,就是说lim(f(2+h)-f(2))/h=1于是,lim[f(2+h)-f(2-h)]/h=lim[f(2+h)-f(2)+f(2)-f(2

h→0时lim[f(a+h)+f(a-h)-2f(a)]/h^2等于什么(设f(x)的导数在 x=a点从这邻近连续)

f(a)在此式中是常数,f'(a)未知.lim[f(a+h)+f(a-h)-2f(a)]/h^2]=lim[f'(a+h)+f'(a-h)(-1)]/2h=lim[f'(a+h)-f'(a)]/2h+

预习新课看不懂,请问这个s等于h,s等于2h,

拉动的距离,s=h是说定滑轮是绳子拉动的距离和重物上升高度一样,类推其他的试试,

设f(x)为可导函数,且lim(h→0) f(3)-f(3+h)/2h=5,则f'(3)等于?

lim(h→0)f(3)-f(3+h)/2h=0.5lim(h→0)f(3)-f(3+h)/h(导数定义)=0.5*[-f'(3)]=5所以f'(3)=-10

设函数f(x)在x=1处可导,且f'(1)=2,则[lim(h→0)f(1-h)-f(1)]/h等于

lim(h→0)(f(1-h)-f(1))/h=-lim(f(1-h)-f(1))/(-h)根据导数的定义,=-f'(1)=-2有不懂欢迎追问