xdydz+ydzdx+zdxdy的曲面积分PPT
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:26:16
用高斯公式计算即可,令P=x+1,Q=y,R=1,则P'x=1,Q‘y=1,R’z=0,所以原积分=∫∫∫(P'x+Q‘y+R’z)dxdydz=2∫∫∫dxdydz,根据三重积分的几何意义,∫∫∫d
可以直接使用高斯公式:没问题的话麻烦采纳吧,/
求曲面积分∫∫xdydz+y^2dzdx+zdxdy,其中Σ为平面上x+y+z=1被坐标平面所截的三角形的上侧.补面:Σ1:x=0,后侧Σ2:y=0,左侧Σ3:z=0,下侧∫∫(Σ+Σ1+Σ2+Σ3)
直接套高斯公式,然后用柱坐标变换,将积分区域化为-R再问:不行吧,高斯公式要求有一阶连续偏导数,可是它在原点不可导阿,不能直接用高斯公式吧,我看网上有人弄出了x^2y^2z^2=2R^2,然后就把分母
Σ:x²+y²+z²=1∫∫Σ2xdydz+ydzdx-2012x³dxdy=∫∫∫Ω(2+1-0)dV=3∫∫∫ΩdV=(3)(4/3)(π)(1)³
使用高斯公式后,化简后被积函数跟积分区域的圆柱体挺难构造关系,就按投影一步一步算吧.∑被积区域可以看成3个平面围成,S1:z=R,S2:z=-R,S3:x^2+y^2=R^2.可以看出S1,S2只在x
Gauss公式.∂P/∂x+∂Q/∂y+∂R/∂z=1+1+2z-2=2z∫∫Σxdydz+ydzdx+(z²-2z)
为了利用高斯公式,将目标曲面补成封闭的曲面,且方向向外侧,最后积分值减去这一部分即可.目标曲面为半球面,补充半球面的底面部分,设为∑a.新形成的封闭曲面设为∑b.在底面时,z=0,dz=0.则:原积分
伙计这个(x-a)^2+(y-b)^2+(z-c)^2是球面吗?不是的,它是屁.令(x-a)^2+(y-b)^2+(z-c)^2=R^2才是,首先要加一个平面z=c取下侧面,才能用高斯公式原式=∫∫∫
这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆
这道题目打错了.y=y*sinv,应该是y=u*sinv方法是将其转化为第一型曲面积分.写为(Pcosa+Qcosb+Rcosy)ds的形式,然后用参数方程改写它.关键是写出参数方程下s的法向量以及d
这题用高斯公式做简单,做辅助曲面S‘:z=0,则S+S'构成闭合曲面,取外侧为正.设P=(x^3+e^ysinz,Q=-3x^2y,R=z,则ðP/ðx=3x^2,ðQ/