xe∧xdx (e∧x 1)²

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:10:32
xe∧xdx (e∧x 1)²
求不定积分 (1) ∫xe^-xdx (2) ∫x^3lnxdx (3) ∫xln(x+1)dx

(1)∫xe^-xdx=-∫xd(e^-x)=-xe^(-x)+∫e^-xdx=-xe^(-x)-e^(-x)+C=-(x+1)e^(-x)+C(2)∫x³lnxdx=∫lnxd(xS

(xe^x)'-(e^x)'是怎么推到xe^x

前一个式子(xe^x)'-(e^x)'=(x'e^x+xe^x)-e^x=e^x+xe^x-e^x=xe^x

当x>0时,证明x<e∧x-1<xe∧x

当x>0时,设f(x)=e∧x-1-x,f'(x)=e^x-1>0,所以F(x)在x>0时为增函数,所以f(x)>f(0),e∧x-1-x>0,e∧x-1>x,同样方法可以证明e∧x-1<xe∧x(设

求几个函数的不定积分,要过程∫sin5xdx ∫[e^x/(1+e^2x)]dx ∫xe^xdx ∫lnxdx ∫xco

1.∫sin5xdx=(1/5)∫sin5xd5x=-(1/5)cos5x+c2.∫[e^x/(1+e^2x)]dx=∫[1/(1+e^2x)]de^x=arctan(e^x)+c3.∫xe^xdx=

结果,不要约等于这个不要“128根号下e980=e^(980/128)=(e^7)xe(21/32)≈1096.6x1.

e^(980/128)=2113.81573819743170052529057979428051752214177916375428827902316114169152653598537186808

∫(0→1)xe∧-x dx

∫[0,1]xe^(-x)dx=-xe^(-x)[0,1]+∫[0,1]e^(-x)dx=-1/e-e^(-x)[0,1]=1-2/e

求定积分:上限是(ln2)下限是(0)xe^-xdx

∫(0,ln2)xe^(-x)dx=∫(0,ln2)(-x)e^(-x)d(-x)=∫(0,ln2)(-x)d(e^(-x))=(-x)e^(-x)|(0,ln2)-∫(0,ln2)e^(-x)d(-

为何在求不定积分∫xe^xdx时,会有两种结果呢?

不定积分的答案是一系列的曲线族,并不唯一的.所以有无限多个答案,选哪个都是正确的!∫ secx dx = (1/2)ln|(1 + sinx

求不定积分 ∫xe^2xdx

1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x

求不定积分∫e^(-x)cos^2xdx

可拆成两项如图,第二项用分部积分计算.经济数学团队帮你解答,请及时采纳.谢谢!

求定积分∫上1下0xe^xdx的值

补充楼上∫[0,1]xe^xdx=∫[0,1]xde^x=xe^x|[0,1]-∫[0,1]e^xdx=xe^x[0,1]-e^x|[0,1]=e-(e-1)=1

∫(0,+∞)xe^-xdx和∫(1,-1)dx/根号(1-x∧2),

第一题;∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C符号太繁琐,带入符号和数字即可.第二题用三角代换,x=tant,t属于(-PI/4,PI/4)

求∫ xe∧x*dx?

∫xe^xdx=∫xd(e^x)=xe^x-∫e^xdx=xe^x-e^x+C用一次分部积分法即得结果.

求不定积分∫e^根号下xdx,

∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C

求不定积分∫(0~+∞)xe^xdx

你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C