xe∧xdx (e∧x 1)²
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:10:32
(1)∫xe^-xdx=-∫xd(e^-x)=-xe^(-x)+∫e^-xdx=-xe^(-x)-e^(-x)+C=-(x+1)e^(-x)+C(2)∫x³lnxdx=∫lnxd(xS
用换元法
前一个式子(xe^x)'-(e^x)'=(x'e^x+xe^x)-e^x=e^x+xe^x-e^x=xe^x
当x>0时,设f(x)=e∧x-1-x,f'(x)=e^x-1>0,所以F(x)在x>0时为增函数,所以f(x)>f(0),e∧x-1-x>0,e∧x-1>x,同样方法可以证明e∧x-1<xe∧x(设
1.∫sin5xdx=(1/5)∫sin5xd5x=-(1/5)cos5x+c2.∫[e^x/(1+e^2x)]dx=∫[1/(1+e^2x)]de^x=arctan(e^x)+c3.∫xe^xdx=
e^(980/128)=2113.81573819743170052529057979428051752214177916375428827902316114169152653598537186808
∫[0,1]xe^(-x)dx=-xe^(-x)[0,1]+∫[0,1]e^(-x)dx=-1/e-e^(-x)[0,1]=1-2/e
∫(0,ln2)xe^(-x)dx=∫(0,ln2)(-x)e^(-x)d(-x)=∫(0,ln2)(-x)d(e^(-x))=(-x)e^(-x)|(0,ln2)-∫(0,ln2)e^(-x)d(-
∵(e^x)'=e^x,x'=1∴dv=(e^x)'dx=e^xdxdu=x'dx=dx
不定积分的答案是一系列的曲线族,并不唯一的.所以有无限多个答案,选哪个都是正确的!∫ secx dx = (1/2)ln|(1 + sinx
1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x
可拆成两项如图,第二项用分部积分计算.经济数学团队帮你解答,请及时采纳.谢谢!
补充楼上∫[0,1]xe^xdx=∫[0,1]xde^x=xe^x|[0,1]-∫[0,1]e^xdx=xe^x[0,1]-e^x|[0,1]=e-(e-1)=1
第一题;∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C符号太繁琐,带入符号和数字即可.第二题用三角代换,x=tant,t属于(-PI/4,PI/4)
∫xe^xdx=∫xd(e^x)=xe^x-∫e^xdx=xe^x-e^x+C用一次分部积分法即得结果.
∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C
你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C