xf(x)dx小于等于xg(x)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:19:25
xf(x)dx小于等于xg(x)dx
不定积分xf(x^2)f'(x^2)dx=多少

凑一下就可以,因为df(x^2)=2xf'(x^2)所以∫xf(x^2)f'(x^2)dx=1/2∫[2xf'(x^2)]*f(x^2)dx=1/2∫f(x^2)df(x^2)=1/2*1/2*[f(

∫xf(x^2)f'(x^2)dx=?

答案:[f^2(x^2)]/4提示:∫xf(x^2)f'(x^2)dx=1/2∫f(x^2)f'(x^2)dx^2,然后令下x^2=t即可

[f(x)+xf'(x)]dx 求不定积分,详解,

令F1=∫f(x)dx,使用分部积分法知F1=f(x)*x-∫xdf(x)+C(C为任意常数),则题目中所求不定积分为F=F1+∫xf'(x)dx=F1+∫xdf(x)=f(x)*x+C

求不定积分 ∫ [f(x)+xf'(x)]dx=

∫[f(x)+xf'(x)]dx=∫f(x)dx+∫xf'(x)dx=∫f(x)dx+∫xdf(x)=∫f(x)dx+xf(x)-∫f(x)dx=xf(x)+C.

高等代数多项式问题设f(x),g(x),h(x)在R[x]内,xf^2(x)+xg^2(x)=h^2(x),证明:f(x

若f(x)不为零多项式,则(f(x))²次数为偶数,x(f(x))²次数为奇数.且由f(x)∈R[x],x(f(x))²的最高次项系数为正数.同理,若g(x)不为零多项式

求∫xf''(x)dx

∫xf''(x)dx=∫xdf'(x)=xf'(x)-∫f'(x)dx=xf'(x)-f(x)+C

∫xf(x)dx=x^3Inx+C,求不定积分∫f(x)dx

令F(x)=∫f(x)dx∴∫xf(x)dx=∫xdF(x)=xF(x)-∫F(x)dx=x^3lnx+C∴∫F(x)dx=xF(x)-x^3lnx+C两边求导得F(x)=F(x)+xF'(x)-3x

∫xf(x)dx = F(x),则F'(x) = xf(x) 为什么 F'(x) = xf(x)?是一个定理吗?

积分与微分(求导)是互逆运算,所以xf(x)的积分再进行微分(求导)还是xf(X),微分就是求导,两边同时进行求导,自然得出结论再问:那是不是xf(x)换成其他随便什么,结果还是原来?再答:通常是的

∫xf(x平方f撇(x平方))dx等于?

这道题很基本哎呀你应该知道∫f撇(x平方))dx的平方=f(x的平方)∫xf(x平方f撇(x平方))dx=二分之一乘以∫f(x平方f撇(x平方))d(x的平方)=二分之一乘以∫f(x平方)df(x平方

∫xf(x)dx=ln|x|+c,则∫f(x)dx=

∫xf(x)dx=ln|x|+Cxf(x)=d/dx(ln|x|+C)=d/dxln|x|当x>0,d/dxln|x|=d/dxln(x)=1/x当xxf(x)=1/x==>f(x)=1/x²

求积分∫xf''(x)dx

就是一阶导数的差再答:比如f'(3)-f'(1)再答:满意请采纳谢谢再问:不懂再答:有什么疑问请继续提问哦再答:就是1/2f'(x)再答:阿不再答:1/2x的平方再答:后面接f'(x)再答:那个1/2

设f(x)的一个原函数是xlnx,则∫xf(x)dx等于( ) A.x^2(1/2+lnx/4)+C B.x^2(1/4

∫xf(x)dx=∫xd(xlnx)=x^2lnx-∫xlnxdx=x^2lnx-1/2∫lnxd(x^2)=x^2lnx-1/2x^2lnx+1/2∫x^2d(lnx)=1/2x^2lnx+1/2∫

已知f(x)dx=x+c,则∫xf(1-x)dx=

第一个式子是不是有问题啊再问:已知∫f(x)dx=x+c,则∫xf(1-x)dx=再答:首先变形令u=1-x,x=1-u,∫xf(1-x)dx=∫(u-1)f(u)du=∫uf(u)du-∫uf(u)

∫ xf(x)dx=arcsinx+C,则∫ dx/f(x) dx=

第二个式子里面怎么有两个dx?没写错?

∫xf'(x)dx=?

设f(x)的一个原函数是F(x)原式=∫xdf(x)=xf(x)-∫f(x)dx=xf(x)-F(x)+C再问:表示没有看明白,能解释得更详细些吗,谢谢再答:就是分部积分

若∫f(x)dx=lnx+c,则∫xf(x)dx等于多少?

∫f(x)dx=lnx+c所以f(x)=(lnx+c)'=1/x所以∫xf(x)dx=∫x*1/xdx=∫dx=x+c

[f(x)+xf'(x)]dx

[f(x)+xf'(x)]dx=f(x)dx+xdf(x)=f(x)dx+xf(x)-f(x)dx=xf(x)+c(分布积分法)

∫(0,3) xf(x-1)dx

∫(0,3)xf(x-1)dx=∫[0,2]x/(x-1)^2dx+∫[2,3]x/xdx前面一项,令x-1=t,dx=dt,x=t+1,x=0,t=-1,x=2,t=1=∫[-1,1](t+1)/t

对∫xf(x)dx求导=?

求导就是积分的逆运算所以对某不定积分求导的结果就是其积分函数,故(∫xf(x)dx)'=xf(x)