xin(1 e^x)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:22:08
令[(1+e^x)^(1/2)]=t,得到1+e^x=t^2,x=ln(t^2-1)原式则变为∫td[ln(t^2-1)]=∫2t^2/(t^2-1)dt=∫[2+(1/(t-1))-1/(t+1)]
令e^x=u,则du=de^x=e^xdx=udx,有du/u=dx所以原式=∫du/u(1+u)²=∫du/u-∫du/(u+1)²-∫du/(u+1)=lnu+1/(u+1)-
1、原式=∫e^xdx/[(e^x)^2+1]=∫d(e^x)/[1+(e^x)^2]=arctan(e^x)+C.2、设x=sect,dx=sect*tantdt,tant=√(x^2-1),1/x
∫1/(e^x)dx=∫(e^-x)dx=-e^(-x)+C
这积分可不能用初等函数表示呢:∫e^(1/x)dx,分部积分法=xe^(1/x)-∫xd(e^1/x)=xe^(1/x)-∫(x*e^1/x*-1/x²)dx=xe^(1/x)-∫e^(1/
点击放大,荧屏放大再放大:
原式=∫e^x/(e^2x+1)dx=∫de^x/(e^2x+1)=arctan(e^x)+C
1-e^2x=(1+e^x)(1-e^x)于是变成求1+e^x的积分,等于x+e^x+C
e^x=y∫(e^x-1)/(e^x+1)dx=∫(y-1)/(y+1)/ydy=∫(2/(y+1)-1/y)dy=2ln(y+1)-ln(y)=2ln(e^x+1)-ln(e^x)=2ln(e^x+
令e^x=t就可以了
再问:∫(1/e^x)*1/(e^-x+1)*(e^-x+1)'*(1/e^-x)dx是这一步中的(e^-x+1)'吗?这个求导的结果不是e^-x?哪里需要负号?
怎么这么多这种题,都是一样的解法,直接就是代换法啊!x^(1/3)=y,x=y^3原式变为∫e^ydy^3=∫3y^2de^y=3y^2*e^y-∫e^yd3y^2=3y^2*e^y-∫e^y*6yd
令√(1+e^x)=u,则e^x=u^2-1,x=ln(u^2-1),dx=2udu/(u^2-1)I=∫√(1+e^x)dx=∫2u^2du/(u^2-1)=2∫[1+1/(u^2-1)]du=2u
de^x=e^xdxdx/1-e^x=1/e^x-e^2xde^x=1/t-t^2dt(其中t=e^x)=(1/t+1/1-t)dt=d(lnt-ln1-t)固dx/1-e^x=d(lne^x-ln(
1、∫1/(x^100+x)dx=∫1/x-x^98/(x^99+1)dx=∫1/xdx-∫x^98/(x^99+1)dx=lnx-1/99*∫1/(x^99+1)d(x^99)=lnx-1/99*l
令u=e^x,则du=e^xdx=udx即是说du/u=dx所以原式为∫1/(u(u+1))du=∫(1/u-1/(u+1))du=∫du/u-∫du/(u+1)=ln|u|-ln|u+1|+C所以原
∫dx/√[1-e^(-2x)]lete^(-x)=siny-e^(-x)dx=cosydy∫dx/√[1-e^(-2x)]=∫-cscydy=-ln|cscy-coty|+C=-ln|e^x-(e^
再问:还是不太懂啊,就是你最后一步,e^x-(-e^x)你是直接把x=1和x=0带进去的吗?那为什么不是+2而是-2?自学中,所以请见谅再答:理解,我也是自学党这里用了微积分基本定理:牛顿- 
该函数不可积,使用matlab积分结果如下:>>int(x/(1+exp(x)))ans=x^2/2-polylog(2,-exp(x))-x*log(exp(x)+1)这里该函数的积分结果用一个不可