xtan^x的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:16:41
因为1-cos4x/2sin^2x+xtan^2x=1-(1-2sin^2x)/2sin^2x+sin^2x/cos^2x=2sin^2x/2sin^2x+sin^2x/cos^2x=2/1+1/co
§dx/[x(lnx-1)]=§dlnx/(lnx-1)=§dlnln(x-1)=lnln(x-1)
原式=∫ln(x+1)d(x+1)=(x+1)ln(x+1)-∫(x+1)dln(x+1)=(x+1)ln(x+1)-∫(x+1)*1/(x+1)d(x+1)=(x+1)ln(x+1)-∫dx=(x+
那肯定是你做错了哈哈哈∫sinx/xdx=∫-1/xdcosx=-cosx/x-∫cosx/x²dx做不到∫sinx/xdx=x*sinx/x-∫x*(xcosx-sinx)/x²
答:1.∫arcsinxdx可用分部积分原式=xarcsinx-∫x/√(1-x^2)dx=xarcsinx+√(1-x^2)+C2.∫e^(√x+1)dx换元,令√(x+1)=t,则x=t^2-1,
用分部积分,设u=arctanx,v'=1/x^2u'=1/(1+x^2),v=-1/x,原式=-(arctanx)/x+∫dx/[x(1+x^2)]=-(arctanx)/x+∫(-x)dx/(1+
∫cos3xdx=∫cos^2xdsinx=∫(1-sin^2x)dsinx=sinx-1/3sin^3x+C(常数)再问:谢谢各位,失误了,问错了,应该是cos^3x分之一的不定积分。。。再答:∫1
答:∫[x/(1-x)]dx=∫[(x-1+1)/(1-x)]dx=∫[-1+1/(1-x)]dx=-∫dx-∫[1/(x-1)]d(x-1)=-x-ln|x-1|+C
又想了下tanx(x---∞)的极限不存在,答案是极限不存在吧
sinx/x的不定积分是不能表示成初等函数形式的(理论上可以证明),但是sinx/x从[0,正无穷]的广义积分是可以计算的,其值为π/2(利用复变函数知识可以算出).
欢迎追问哦!亲再问:�Ǹ���������ӻ��и�X再答:������˼����������Ŀ�ˣ����¥�µ���ʾ������һ�£�
=1/2·∫lnx/xdx=1/2·∫lnxdlnx=1/4·(lnx)^2+C
等于sinxdx再问:具体过程再答:直接等于啊再问:不定积分再问:再答:满意答案再问:求解题过程再问:图片已发再答:再答:再答:图片发不出再答:嘿嘿再答:嘿嘿,能聊几句吗?昨天我回答你的试题,是因为我
用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的
∫x/(sinx)^2dx=-∫xdcotx=-xcotx+∫cotxdx=-xcotx+ln|sinx|+C满意请好评o(∩_∩)o
为sinx-1/3*sin^3x+C具体过程看图,有不懂可以问我~~~
分部积分,结果=X^ 3 ·arctanX/3-X^2/6+In|1+X^2|/6+C,发张图给你看下我的解题过程