xy+yz zx的积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:03:02
xy+yz zx的积分
第一、二型线积分和面积分的意义

第一型曲线积分是跟弧长有关,每个弧长微元ds有一个对应的f(x),相当于线密度,求积分之后相当于是总长度的质量.第二型曲线积分跟坐标有关,它的微元是个矢量,相当于位移,对应的也有一个矢量,相当于作用于

定积分的积分区间是不是积分变量的范围

是的,如果是dx,那么积分范围就是x的范围,如果是dy,那么积分范围就是y的范围

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域,

题目中z=0表示的就是xoy平面,画个大概的立体图容易知道,此时所求的区域在Z正半轴,Z>0,当x=y且z=xy时,x=y=0,x=1是x的积分上限,若被积区域在x>1的范围,就不能构成封闭的积分区域

曲线积分 积分c xy平方dy-x平方ydx,其中C是x平方+y平方=4的上半圆沿逆时针方向

格林公式确实是需要条件的,不过本题可以用格林公式.格林公式要求P,Q这两个函数在区域内具有一阶连续偏导数,本题是满足的.方法1:格林公式补线段c1:y=0,x:-2--->2,则c+c1为封闭曲线∮c

xy'=y+xy的

xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs

求二元函数混合积分 z=f(x²-y²,e的xy次方)

求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(&#

全积分&广义积分的问题?

全积分:各偏微分的和.定积分,有上下限微积分,没有上下限广义积分到无穷大,到无界.或无界到有界,无穷小到有界之类的

dy/dx=xy+x+y 如何积分?

dy=xy*dx+x*dx+y*dx两边同时积分y=y*1/2*x*x+1/2*x*x+xy(1-1/2*x*x-x)y=1/2*x*xy=x*x/(2-2x-x*x)+C*是乘号x*x是x的平方

定积分中的积分变量的问题

题目当中给出的做法以及对又例的明白都是对的,经过变量替换以后,u确实是新的积分变量,原来的积分变量是t,对积分而言,x可看作常量,对求导而言,x是求导变量,这些都是对的.你的问题是说,题目和又例是两种

求方程组dx/(x+y)=dy/(x-y)=dz / (y^2-2xy-x^2)的通积分

把x,y看做是z的函数得到如下通解我只想说,估计你的方程有问题.

求积分,(sinx)^2 dx的积分

这两个问题的积分,首先要做的就是降次.(sinx)^2=(1-cos[2x])/2.∴∫(sinx)^2dx=∫(1-cos[2x])/2dx=x/2-1/2*∫cos[2x]dx=x/2-1/4*s

利用曲线积分,求微分表达式的原函数 (x^2+2xy-y^2)dx+(x^2-2xy-y^2)dy

(x^2+2xy-y^2)dx+(x^2-2xy-y^2)dyP=(x^2+2xy-y^2)Q=(x^2-2xy-y^2)Py=Qx,积分与路径无关z(x,y)=∫(x^2+2xy-y^2)dx+(x

一道简单的曲线积分计算对坐标曲线积分∫(6xy^2-y^3)dx+(6x^2y-3xy^2)dy为从点A(0,0)经曲线

答案:2.过程不详述了.这个积分是跟路径无关的,因为原函数是一个函数(3xxyy-xyyy)的全微分.在这种情况下,积分值等于原函数在起始点值的差.

计算三重积分∫∫∫xy^2z^3dxdydz,其中积分面积是由z=xy,y=x,x=1,z=0所围成的闭区域.

累次积分,投影到xoy面上,先对Z积分,积分限(0,xy),再对y积分(0,x),x积分(0,1)=1/28*13

求二重积分XY+COSX*sinY在(1,1)(-1,1)(-1,-1)为顶点三角形的D积分过程

将积分区域沿中间分为两部分D1:关于y对称的区域D2:关于x对称的区域通过奇偶性的分析,XY+COSX*sinY在D2的积分为0【关于y的奇函数】同样的,xy在D1上的积分也是0【关于x的奇函数】只需

曲线积分问题(2xy-x^2)dx+(x+y)^2dy对于L的曲线积分,其中L是关于抛物线y=x^2和y^2=x所围成的

根据你的要求,下面补充用格林公式来进行计算的大概步骤2xy-x^2的关于y的偏导数是2x(x+y)^2的关于x的偏导数是2(x+y)显然y=x^2与y^2=x围成了一个闭区域,且属于x型区域D则根据格